Runoff and soil loss at cultivated soil with wheel track effect: a case study

Jakub Jeřábek

Workshop on soil physics and landscape hydrology

March 26, 2019

Motivation

- Formation of runoff and soil loss at cultivated soil
- Effect of wheel tracks on runoff and soil loss formation
- Monitoring of shallow subsurface processes and their effect on runoff and soil loss

1. Overview

Artificial rainfall experiment on a cultivated soil

- Two 16 m^2 plots
 - without wheel track > reference plot
 - with wheel track
- Rainfall of intensity of 30 mm/hour
- Measures variables
 - surface/subsurface runoff
 - soil loss
 - shallow water content and suction pressure

・ロト ・回 ト ・ヨト ・ヨー うへで

- transport of tracer (deuterium)
- soil water redistribution (ERT)
- Surface development (photogrammetry)

1. Overview

Seedbed and wheel track preparation

- seedbed preparation 5 days prior the experiment
- artificial wheel track created a day prior experiment
 - four passages of tractor and seedbed preparation "device"
 - very dry soil

2. Setup

2. Setup

2. Setup

Runoff and soil loss

3. Runoff and soil loss

Basic runoff and soil loss parameters

• All runoff and soil loss were drained through wheel track at wheel track plot

plot:	reference	wheel track
set rainfall intensity [mm/hour]	30	30
rainfall duration [min]	290	245
total rainfall height [mm]	145	124
maximal surface runoff [mm/hour]	22.7	25.5
total cumulative sur. runoff [mm]	38	57
lag time of runoff [min]	76	15
runoff coefficient [%]	26.3	46.5
total soil loss [g]	3435	9942

Runoff and soil loss at reference plot

Runoff and soil loss at wheel rack plot

Shallow subsurface processes

4. Shallow subsurface processes

Soil water content

Bottom position on plots

Runoff and soil loss at wheet rack plot

Transport of tracer (deuterium)

(日) (四) (三) (三) (三)

Deuterium as a tracer

- D_2O was added into rainfall water when runoff was steady
 - dilution ratio 1:10000

Mass balance equations

 $Q_{new}(t) + Q_{old}(t) = Q_{total}(t)$ $c_{new}(t)Q_{new}(t) + c_{old}(t)Q_{old}(t) = c_{total}(t)Q_{total}(t)$

Measured in surface runoff and vertical transport with zero-tension lysimeter

Surface runoff

Surface runoff

Measurement on zero-tension lysimeter

Measurement on zero-tension lysimeter

Surface runoff - mixing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Surface runoff - mixing

Measurement on zero-tension lysimeter - mixing

→ 《문》 《문

Measurement on zero-tension lysimeter - mixing

(日本 本語 本 前 本 前 本 合 う ろ う う

Soil water redistribution (ERT)

-< 문 ► < 문

Electrical resistivity tomography

Reference plot

- 1 day after the experiment
- 2 transects oriented slope wise
- time lag between measurements 6 hours

Wheel track plot

- 1 day after the experiment
- 1 cross section
- comparison with excaved soil profile

6. Soil water redistribution (ERT)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆○ ●

6. Soil water redistribution (ERT)

Reference plot

Reference plot: 19.9.2019 12:00

Reference plot: 19.9.2019 18:00

Reference plot: el. resistivity difference

6. Soil water redistribution (ERT)

Reference plot: Comparison to DTM

▲日マ ▲国マ ▲田マ ▲田マ 山 もんら

6. Soil water redistribution (ERT)

Wheel track plot: comparison to excaved soil profile

- Use model to identify processes affecting the runoff formation
 - measuring soil hydraulic properties: in progress
- Link surface roughness to flow regime
- Analyze travel time and mixing in the flow pathways

・ロト ・同ト ・ヨト ・ヨ

• analysis of stable isotopes: in progress

- Presence of wheel track affects the surface runoff and soil loss and vertical water transport
- Vertical transport is heterogeneous even in homogeneous soil
- ERT may be used to wheel track artifacts identification

Teplota pri experimentech

cas

8. Conclusions

8. Conclusions

8

o21 **o**40 **o**35 **o** 32 **o** 25 **o**24 **o** 39 \oplus **o** 36 **o** 32 o 27 o rain gauge ⊕ nozzle

19.9.2018 mean intenzity 31.1 [mm/hour]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(♡