143ESP Soil physics for engineers Hydraulic conductivity

Jakub Jeřábek

March 13, 2023

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(Un)saturated hydraulic conductivity (K)

Measure how a given liquid flows through a given material.

- saturated hydraulic conductivity K_s
 - Scalar or tensor variable
- Unsaturated hydraulic conductivity K
 - function of suction pressure or vol. water content

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction

Saturated hydraulic conductivity K_s

permeability k is a property of the material alone

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

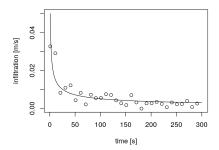
•
$$K = k \frac{\rho g}{\sigma}$$

(Un)saturated hydraulic conductivity can by obtained

- 1. by measurement in the field,
- 2. by measurement in the lab, or
- 3. from RC with a given mathematical model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

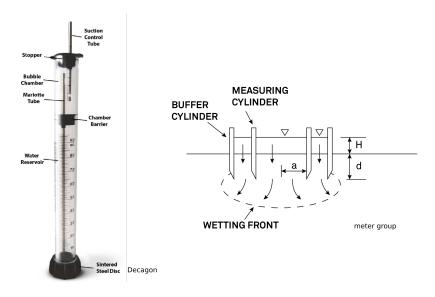
How to determine it? In the field


In the field

- Ponding experiment
- Mini-dist infiltration experiment

Philips infiltration

 derived for Richards equation for semi-infinite space


$$i = 1/2St^{-1/2}K_{fs}$$

A D > A P > A D > A D >

э

How to determine it? In the field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○へ⊙

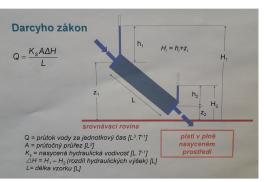
How to determine it? In the lab

In the lab

- K_s is calculated with the Darcy formula
- K is calculated with the Darcy-Buckingham formula
- water flow measurement +
 - stepwise changes of hydraulic gradient
 - gradual changes of hydraulic head gradient (falling head experiment)

evaporation method

Darcy-Buckingham formula


$$q = -K(h)\nabla H$$

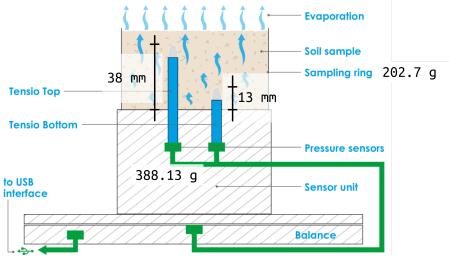
► H = h + z

• for x direction: $q = -K(h) \frac{dH}{dx}$

How to determine it? In the lab

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Constant and falling head exepriment to determine Ks


How to determine it? In the lab

◆□→ ◆□→ ◆臣→ ◆臣→ □臣

Evaporation experiment to determine K

Jak získat hydraulickou vodivost? v laboratoři

Evaporation experiment to determine K

from retention function

Mathematical model

- Introduction of relative capillary conductivity
- Predicted according to Mualem's or Burdine's capillary model
- ▶ Relative K is inferred from retention curve and scaled by K_s

Mualem's model

Relative unsaturated hydraulic conductivity (K_r)

$$K_r(h) = \begin{cases} \frac{(1-(-\alpha h)^{mn}(1+(-\alpha h)^n)^{-m})^2}{(1+(-\alpha h)^n)^{m/2}} & \text{if } h < 0\\ 1 & \text{if } h \ge 0 \end{cases}$$

Inverse K_r

$$K_r(\theta_e) = \theta_e^{1/2} (1 - (1 - \theta_e^{1/m})^m)^2$$

Unsaturated hydraulic conductivity

$$K(h) = K_s K_r(h)$$

1. Plot the Mualem relative hydraulic conductivity curve for 3 soils. Use the van Genuchten retention curve parameters from the previous exercise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 2. Scale the Mualem curve K_r with K_s .
- 3. Add the value of hydraulic conductivity to the soil profile in the previous exercise.
- 4. Optional: Calculate Darcian flow for depth $z_{i+1/2}$

- 1. What is the order of the soils if you rank them by hydraulic conductivity values for a pressure of -20 hPa?
- 2. In which depth in the soil profile is K high? Why?
- 3. What processes can cause pressure head distribution as shown in the soil profile from previous exercise?

Submit the Excel with assignment with answers. In person or by email to jakub.jerabek@fsv.cvut.cz. Please use subject: **143ESP**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Effective water content

$$\theta_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}$$

van Genuchten retention curve (m = 1 - 1/n) (VG)

Relative unsaturated hydraulic conductivity (K_r) :

$$K_r(h) = \begin{cases} \frac{(1-(\alpha|h|)^{mn}(1+(\alpha|h|)^n)^{-m})^2}{(1+(\alpha|h|)^n)^{m/2}} & \text{if } h < 0\\ 1 & \text{if } h \ge 0 \end{cases}$$

Inverse K_r

$$\theta(h) = \theta_r + \frac{\theta_s - \theta_r}{(1 + (\alpha|h|)^n)^m}$$

$$K_r(\theta_e) = \theta_e^{1/2} (1 - (1 - \theta_e^{1/m})^m)^2$$

Unsaturated hydraulic conductivity

$$K(h)=K_sK_r(h)$$

h capillary pressure [*L*, *Pa*], θ - volumetric water content [L^{3} . L^{-3}], θ_{r} - residual water content[L^{3} . L^{-3}], θ_{s} - saturated water content[L^{3} . L^{-3}], α - VG parameter [L^{-1}], n - VG parameter [-], m - VG parameter [-], K unsaturated hydraulic conductivity [L. t^{-1}], K_{r} relative unsaturated hydraulic conductivity [-], K_{s} saturated hydraulic conductivity [L. t^{-1}]