

Department of Irrigation, Drainage and Landscape Engineering, Faculty of Civil Engineering, CTU Prague

Institute of Hydraulics and Rural Water Management – BOKU Vienna

INTRODUCTION TO ARCGIS 10

MAIN WINDOW

ICONES – HOW TO DISPLAY AND USE THE MAP

<u>F</u> ile	<u>E</u> d	it <u>V</u>	<u>(</u> iew	<u>B</u> ookn	narks	<u>I</u> nsert	<u>S</u> ele	ection	<u>G</u> e	oproce	ssing	<u>C</u> us	tomize	<u>W</u> ir	ndow	s į	<u>H</u> elp	
: 🗅	2		3 🖞	. 🖻 🛛	a x I	50	14	> - [- 🖌	📰]	7	D	> • -
: 🔍	€,	Eus)) ;	K K X	$\Leftrightarrow \Rightarrow$	1/27 -	M	k	1	/ 🗊	**	A	к÷ "О	O	Ð	ц I	Ð) (j) (M 😨
NI WOOZ	ZOOM OUT	PAN (BY DRAGING)	FULL EXTENT		PREVIOUS/NEXT EXTEND	SELECT FEATURES	CLEAR SELECTION	SELECT ELEMENTS	IDENTIFY		MEASURE							

SOIL LOSS AND SEDIMENT TRANSPORT FROM WATERSHED (using USLE/RUSLE)

USLE: A = R.K.L.S.C.P

A Average annual soil loss	$(t ha^{-1} year^{-1})$
R rainfall erosivity factor	$(N ha^{-1} year^{-1})$
K soil erodibility factor	$(t N^{-1})$
L slope length factor	(no unit)
S slope steepness factor	(no unit)
C crop management factor	(no unit)
P rates erosion control practices	(no unit)

After having the pure soil loss, we have to estimate for deposition within the watershed. Soil loss is higher than the sediment yield (transport)!

1 Source layers overview:

Rasters:

PRUSANKA_LANDSAT_453 – Landsat image in false colors ORTHOPHOTO_3M – contracted orthophoto (3m resolution) LANDUSE – land use map of the catchments

- 1 tracks
- 2-villages
- 3 orchards
- 4-vineyards
- 5 streams
- 6-reservoirs
- 7 forests
- 10 161 arable land fields

Vectors:

CONTOURS – 1:25000 military mapRESERVOIR – reservoir outlineSEDIMENT LAYER – sediment depths in measured samplesSOIL_MAP – soil bonity mapWATERSHED – the catchments area

Notes:	
--------	--

2 **DEM** preparation

Tool – TOPO TO RASTER, 15m resolution

Tool - FOCAL STATISTICS, filtering output dmt - 3x3, mean

 $Tool-{\bf FILL}-establish \ hydraulic \ connectivity \ of \ the \ surface. \ Necessary \ for \ rainfall-runoff modelling.$

 Play with:
 SLOPE (degrees/percent)

 FLOW DIRECTION -> FLOW ACCUMULATION
 (from dmt_filter and dmt_fill – compare differences)

$\label{eq:constraint} Tool-RECLASSIFY~(from~LANDUSE~to~MASK)$

Old value	New value
0 - 2	NoData
3 – 4	1
5 - 9	NoData
10 - 161	1

$\label{eq:constraint} \operatorname{Tool} - \textbf{RASTER CALCULATOR}$

⇒ Flow direction for mask (FlowD_mask)

FlowD_mask = MASK * FlowD

⇒ Use again **FLOW ACCUMULATION** (FlowA_mask)

3 Factor R

Rainfall erosivity factor based on **rainfall kinetic energy** = $35 \text{ N ha}^{-1} \text{ year}^{-1}$

4 Factor K

Soil erodibility (t N⁻¹) – based on silt content (texture) and organic carbon content

Soil category	Κ	Soil category	Κ
1	0.24	21	0.11
3	0.25	22	0.19
4	0.14	40	0.18
5	0.21	41	0.25
6	0.24	58	0.28
7	0.19	60	0.23
8	0.26	61	0.25
19	0.25	62	0.28
20	0.21	67	0.32

Module POLYGON TO RASTER - convert the soil map to raster

Module **RECLASSIFY** – assigning K values Can be done either manually (class by class) or using table file

We press: "Load..."

K_factor_reclass file is in the directory.

We have to examine the soil around RESERVOIR and FORESTS – use **non-zero** values for categories 230, 240, 250 --> average value ---> 0.26.

5 Land use map and factor C

C means:	Vegetation impact on soil loss reduction - relative
Bare soil	> C = 1.0
Total prote	ction> C = 0.0

Differences between orthophoto & Landsat – classification – examine the Landsat map, look at the 3 reservoirs with changing reflectance, different crops, etc.

Module **RECLASSIFY** – assigning the C factor values from LANDUSE categories

Orchards	C = 0.22	Arable land :	corn	40 % - 0.50
Vinevards	C = 0.35		winter wheat	30 % - 0.12
Arable I and	C = 0.26		alfa-alfa	15 % - 0.02
Alable Laliu $C = 0.20$			spring barley	15 % - 0.15
Other categor	les not used $\rightarrow C = 0$	Resulting in average C factor = 0.26		

were uniform over FIELDS or SOIL GROUPS – based just on reclassifications. Now we get to spatially distributed modelling –

LS factor is widely implemented in many USLE/RUSLE based models.

		Forest
L§ Usle2D		LS factor
File Tools Options About	LS Options	
UP LS Houting Algorith Multiple Flow LS Algorithm: McCool Data	Steepest Descent Flux Decomposition Multiple Flow	790 1290 1290 1290 1290 1290 1290 1290 12
	Parcel connectivity	

Notes:		

6 LS factor

Slope length and slope steepness factors (relative)

$$L = \left(\frac{\text{slope length}}{22.1}\right)^m$$
, m between <0.1 – 0.7>
based on slope

$$\begin{split} S &= 10.8*\sin\theta + 0.03 \quad \text{for slope} < 9 \ \% \\ S &= 16.8*\sin\theta - 0.5 \quad \text{for slope} > 9 \ \%, \text{ etc. } \dots \\ \theta \dots \dots \text{ slope angle (deg/rad)} \end{split}$$

LS – in 3D topography is based on upslope area

e.g. (Mitasova et al., 1996)

$$LS = (m+1) \left[\frac{norm.\ upslope\ area}{22.1}\right]^m \left[\frac{\sin(\theta)}{0.09}\right]^n$$

noralized upslope area... is contributing area per contour width (m) m < 0.4 - 0.7 > and n < 1.0 - 1.4 > are calibrating parameters

we: m = 0.4; n = 1.2

to get θ : tool **SLOPE** – slope angle in degrees (already prepared)

to get norm. upslope area: Already prepared layer - FlowA_mask

norm. upslope area is number of contributing (upslope) pixels – convert to area (multiply by pixel size in meters), then divide by resolution (=contour width). \rightarrow FlowA_mask * 15

Use **RASTER CALCULATOR:**

LS_factor = 1.4 * (Power(''FlowA_mask'' * 15 / 22.1), 0.5) * (Power(Sin(''Slope'' * 3.14 / 180) / 0.09), 1.2))

7 Factor P

Management factor (relative) – if there are no conservation practices, P = 1.0

8 Soil loss – USLE

Soil loss based on 3D USLE is total detachment and redistribution within fields.

Use **RASTER CALCULATOR:** Soil_loss = 35 * "K_factor" * "LS_factor" * "C_factor" * 1 / 100 / 100

!!! Important: **units** – C and K factor!!!

We create a map of Soil_loss [t/ha/year] over the Landuse map.

Module **ZONAL STATISTICS** Create: Average SOIL LOSS per parcel (check vineyards and orchards!!!) → map Module **ZONAL STATISTICS (AS TABLE)** Compute : Total SOIL LOSS per WATERSHED – TO TABLE

9 Sediment transport – SDR

Sediment delivery ratio accounts for eroded soil depositions between field-reservoir.

$$SDR = \frac{sediment yield}{total soil loss} = \frac{SY}{A} [\%], \quad - \rightarrow \quad SY = A * SDR$$

SDR = function (area, relief, CN) = $a * (F)^b * (RR)^c * (CN)^d$

F watershed area (km²)

RR relief ratio (m/km) average divide altitude –watershed outlet altitude maximal streamlength

CN Average SCS curve number value within the watershed

a = 1,366 . 10⁻¹¹, b = - 0,0988, c = 0,3629, d = 5,444

Compute WATERSHED area in square km (CALCULATE GEOMETRY – in attribute table).

Compute WATERSHED divide average and minimum heights:

ZONAL STATICTICS AS TABLE (watershed divide, DEM, minimum; average) Measure approximate WATERSHED maximal streamlength – by **MEASURE tool**

Compute average SCS curve number value within the WATERSHED:

CN values (assumed the same soil texture group):

RECLASSIFY ZONAL STATISTICS

1 - tracks = 92	5 - streams = 100
2 - villages = 90	6 - reservoirs = 100
3 - orchards = 76	7 - forests = 65
4 - vineyards = 81	10 - 161 - fields = 80
	(average)

Compute SDR and SY.

Reservoir trapping efficiency (Brune, Dendy)

$$TE = 100 \cdot 0.97^{0.19^{\log(C/I)}}$$

C (volume) = $142\ 000\ m^3$ I (outflow) = $1\ 419\ 120\ m^3$ /year

Sediment bulk density: 1,2 t/m³ Reservoir duration: 25 years

Further analyses

Average vs. total erosion rates on the parcels (fields)

Conversion scenarios – grassland to the steepest slopes – erosion reduction (C factor change) Fly, layers investigation, map outputs – ortho, aspect.

Contribution of every parcel to total sediment transport (difference files from sediment yields). Etc.

11 Sediment amount measurement and calculation – reservoir

Overview of ortho-photo (aerial) map (raster), overview of measured values points (vector)

 $\mathrm{Tool}-\mathbf{CREATE}\;\mathbf{TIN}$

Tool – TIN TO RASTER

Tool – FOCAL STATISTICS, filtering output dmt - 7x7, mean

Sediment amount extraction by ZONAL STATISTICS AS TABLE (total sum)

Important: units conversion (cm, pixel size \rightarrow m³)

Comparison – measured vs. computed

Questions, discussions, further analyses,