SIMULATION METHODS FOR WATERSHED MANAGEMENT Introduction to hydrological modeling

Topics

- Principles of hydrological modelling
- Description and types of models
- Effective rainfall (precipitation loss) calculation or indirect methods for its calculation – Soil Conservation Service – Curve Number method (SCS-CN)
- Catchment hydrologic response calculation unit hydrograph (UH) method

Model - definition

- General definition:
 - Generalized and simplified representation of some real phenomenon or real system
 - Describe transformation of model inputs into model outputs with respect to model parameters or characteristics
- Mathematical model:
 - Set of mathematical equations describing given phenomenon in a numeric (quantitative) way

$$y = f(x_1, x_2, ..., x_n; p_1, p_2, ..., p_m) + \varepsilon$$

Models - division

- Models can be divided into groups according to different characteristics
 - Theoretical vs. Conceptual vs. Empirical
 - Distributed vs. Semi-distributed vs. Lumped
 - Linear vs. Non-linear
 - Time-variant vs. Time-invariant
 - Stochastic vs. Deterministic

Theoretical, conceptual and empirical models

- Theoretical models (white box, physically-based)
 - Use most important laws governing the phenomena
 - Logical structure similar to the real-world system
- Conceptual models (grey box)
 - Intermediate between theoretical and empirical
 - Consider physical laws but in highly simplified form
- Empirical models (black box, input-output)
 - Do not consider basic physical processes

Distributed, semi-distributed and lumped models

- Distributed models
 - Whole catchment is divided into elementary unit areas in which processes are calculated
 - Rasters, grids, hexagonal nets
- Semi-distributed models
 - Catchment is divided into sub-catchments in which processes are calculated and then routed through drainage network connecting them
- Lumped models
 - Describe the catchment as a whole
 - Catchment is described by parameters which do not consider spatial distribution

Linear and non-linear models

Linear models

- Hold the principle of superposition
- Non-linear models
 - Do not hold the principle of superposition

$$y_1 = f(x_1)$$
 $y_2 = f(x_2)$

if $y_1 + y_2 = f(x_1 + x_2)$ then the model is linear in system theory sense

if $y_1 + y_2 \neq f(x_1 + x_2)$ then the model is non-linear in system theory sense

Time-variant and time-invariant models

- Time-variant models
 - The input-output relationship changes with time
- Time-invariant models
 - The input-output relationship is not changing with time

$$y = f(x_1, x_2, ..., x_n; p_1, p_2, ..., p_m) + \varepsilon$$

At least one of model parameters varies in time

$$p_i = f(t)$$

Stochastic and deterministic models

- Stochastic models
 - At least one variable or parameter is regarded as random having probability distribution
 - The model returns different output values for the same input when applied repeatedly
- Deterministic models
 - No variables or parameters are random having probability distribution
 - Application of the model returns always same output for the same inputs

SCS-CN method - introduction

- Developed at USDA in the middle of 20th century

 institution Soil Conservation Service (SCS) –
 now NRCS (Natural Resources Conservation Service)
- Dedicated for calculation of effective rainfall (depth of direct runoff)
- Works with most important catchment characteristics with an influence on rainfall-runoff process

SCS-CN method – basic principles

- Mass conservation law
- Assumption of equality of ratio between actual direct runoff value and precipitation total and ratio between actual infiltratio and maximum potential retention
- Assumption of initial loss amount given by a part of maximum potential retention

Mass conservation law $P = I_a + F + Q$

- *P* precipitation
- *I_a* initial loss, initial abstraction (short term losses interception, depression storage etc.)
- *F* infiltration
- *Q* runoff

All in units of legth

Assumption of ratios equality $\frac{Q}{P-I_a} = \frac{F}{S}$

- *P* precipitation
- *I_a* initial loss, initial abstraction (short term losses interception, depression storage etc.)
- *F* infiltration
- *Q* runoff
- *S* maximum potential retention

All in units of length

Assumption of relationship between *Ia* a *S*

$$I_a = \lambda \cdot S$$

- *I_a* initial loss, initial abstraction (short term losses interception, depression storage etc.)
- *S* maximum potential retention
- λ regional parameter which depends mainly on geology and climatic conditions (mostly considered as 0.2)

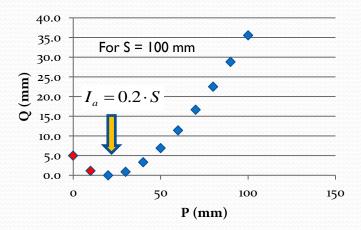
All in units of legth

Derivation

 From mass conservation law and assumption of equality ratios:

$$Q = \frac{\left(P - I_a\right)^2}{P - I_a + S}$$

Derivation


• After substitution of relationship between *I_a* a *S*:

 $\frac{(P-0.2\cdot S)^2}{P+0.8\cdot S}$ *Q* =

for: $P \ge 0.2 \cdot S$

for: $P < 0.2 \cdot S$

() = ()

Maximum potential retention

- S can vary theoretically from o to ∞, therefore CN parameter is introduced to vary between o 100
- Maximum potential retention is then expressed as:

$$S = \frac{1000}{CN} - 10 \qquad \text{[inch]}$$

Inches are used according to the method origin

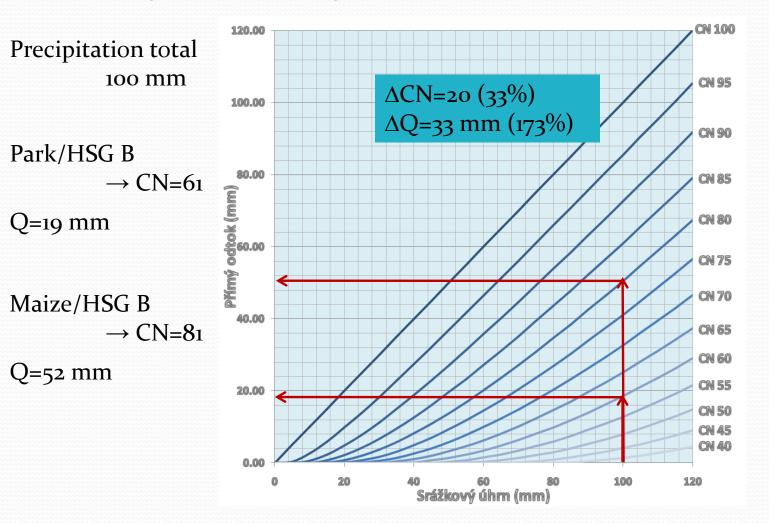
Maximum potential retention

• In metric units (SI) the equation changes to:

$$S = 25.4 \cdot \left(\frac{1000}{CN} - 10\right) \quad [mm]$$

Real CN values vary from 40 to 98

CN parameter


- Value of *CN* is based on combination of land use type and hydrological soil group with respect to antecedent precipitation index
- *CN* values can be found in tables for moderate antecedent precipitation index API II
- *CN* values for other APIs (API I and API III) must be recalculated from the value of *CN* for API II
 - API I precipitation less than 1.3 cm in dormant season and less than 3.6 cm in growing season in preceeding 5 days
 - API III precipitation more than 2.8 cm in dormant season and less than 5.3 cm in growing season in preceeding 5 days

CN - values

LU code	Land use	Hydrological soil group			
		Α	В	С	D
100	urban areas	61	75	83	87
110	residential areas	61	75	83	87
113	gardens	57	73	82	86
114	parks/lawns	39	61	74	80
120	communications	82	89	92	93
121	streets/roads	82	89	92	93
122	paths	72	82	87	89
123	railway	72	82	87	89
130	industrial areas	81	88	91	93
200	arable land - maize	72	81	88	91
255	small grain	63	75	83	87

Note: values used for purposes of EMTAL project

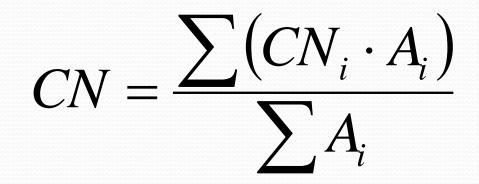
Graphic representation

Hydrologic soil groups

Hydrologic soil group	Infiltration rate from inch/hr (cm/d)	Infiltration rate to inch/hr (cm/d)
A	0.30 (18.29)	0.45 (27.43) and more
В	0.15 (9.14)	0.30 (18.29)
С	0.05 (3.05)	0.15 (9.14)
D	0.00	0.05 (3.05)

Antecedent precipitation index

API	Precipitation total in last 5 days (cm)			
AFI	Dormant season	Growing season		
Ι	Less than 1.3	Less than 3.6		
II	1.3 to 2.8	3.6 to 5.3		
III	More than 2.8	More than 5.3		


Antecedent precipitation index

• *CN* values calculation for other antecedent precipitation indexes

$$CN_{I} = \frac{CN_{II}}{2.281 - 0.01281 \cdot CN_{II}}$$
$$CN_{III} = \frac{CN_{II}}{0.427 + 0.00573 \cdot CN_{II}}$$

CN values for heterogeneous areas

• In case of area heterogeneity the final value of *CN* is calculated as weighted average

Advantages of the method

- Simple conceptual method for calculation of direct runoff
- Well documented, introduced and widely used method; a lot of empirical data is available
- The method has only one parameter parameter *CN*
- For given cases produces relevant outputs
- Works with most factors with important influence on direct runoff forming

Disadvantages of the method

- Method does not consider slopes
- Soil characeteristics are considered only roughly
- Soil profile saturation is considered only by three states
- Method is developped in conditions of USA needs validation when used in other regions, sometimes recalibration is also needed
- Method originaly does not consider precipitation distribution in time
- Method is not suitable for small precipitation totals