143SRPP Stream Revitalization: Principles & Practices

LECTURE 2 Fluvial Geomorphology

Fluvial Systems: Watersheds, Hierarchical Structure, Morphological Forms, and Scale Characteristics and Classifications

Winter 2019 Semester

30 September 2019

CTU in Prague - Faculty of Civil Engineering The Department of Landscape Water Conservation

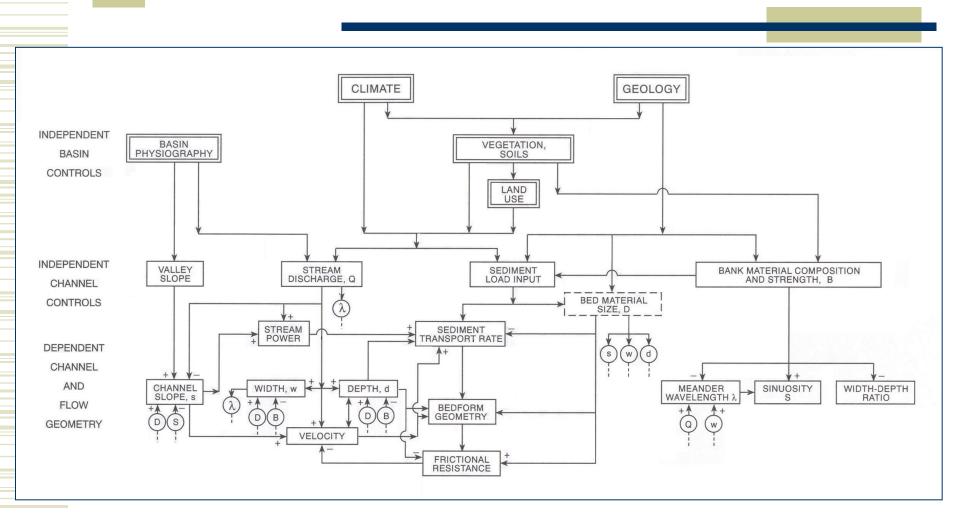
Fluvial Geomorphology

Fluvial Geomorphology is the study of landforms and the processes that shape them by the *transport of water and sediment* through a drainage network.

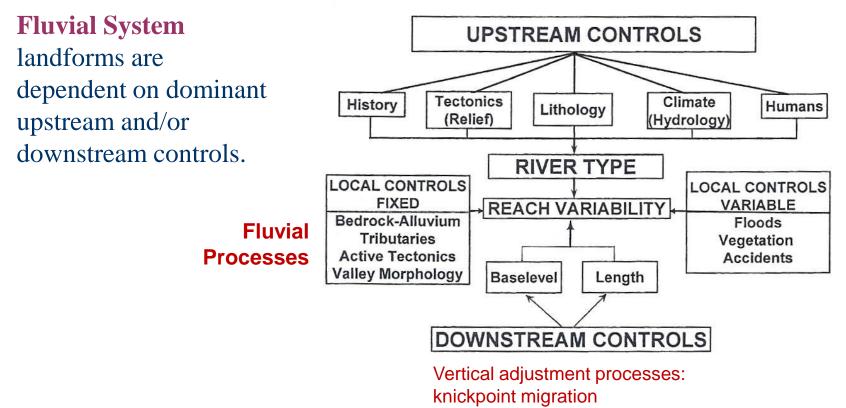
River Mechanics is the branch of fluvial geomorphology that quantifies the relationship between process and form in rivers and streams. Relationships are developed through a combination of field observations, physical experiments, and numerical modeling.

Fluvial Geomorphology

Fluvial Geomorphology is the study of landforms and the processes that shape them by the transport of *water and sediment* through a fluvial system.


Fluvial forms: structural patterns of landforms at various spatial scales, from watersheds to channel bedforms.

Fluvial processes: the action when a hydraulic force from moving water induces a landform change by transporting sediment (erosional degradation) and/or lack of force causing sediment deposition (aggradation).

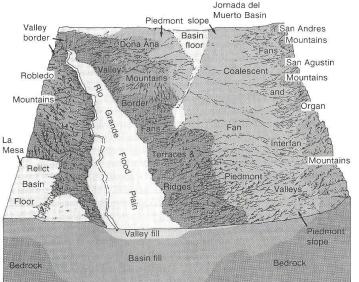

Hydraulic forces are dependent on flow, slope, landform\channel roughness (flow resistance) influencing local degradation and aggradation.

Classic Reference: Knighton, D. 1998. Fluvial Forms and Processes: A New Perspective. Taylor and Francis Group, London. 383 p.

Fluvial Systems: Dominant Controls

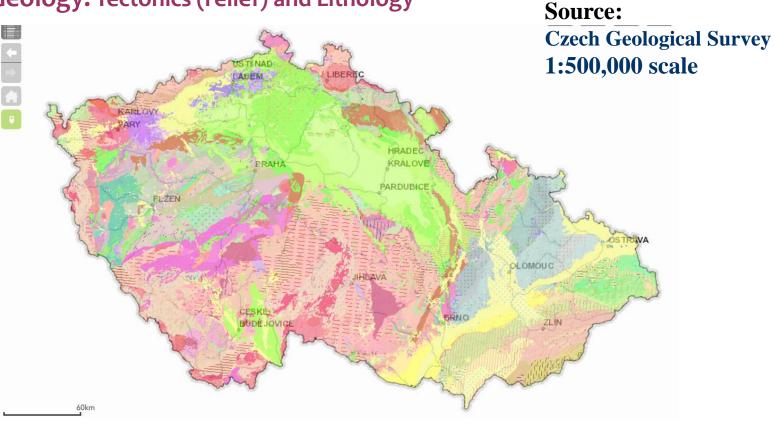
Fluvial Systems: Dominant Controls

Schumm (1977, 2005)

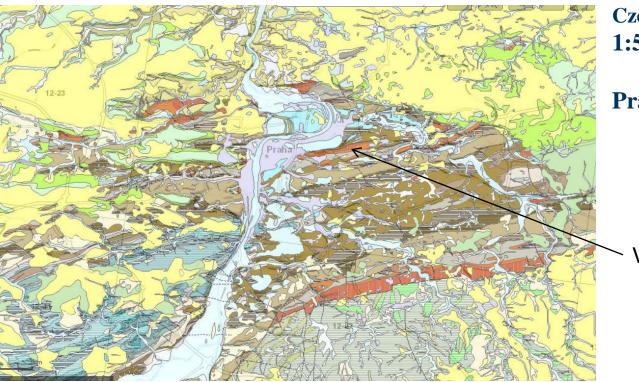

The naming of a **lithology** is based on the rock type: three major types: sedimentary, igneous, and metamorphic.

Lithology may be either a detailed description of these characteristics or be a summary of the gross physical character of a rock.

Other definitions


Alluvial deposition zones occur at breaks from mountainous regions into valleys and tributary junctions.

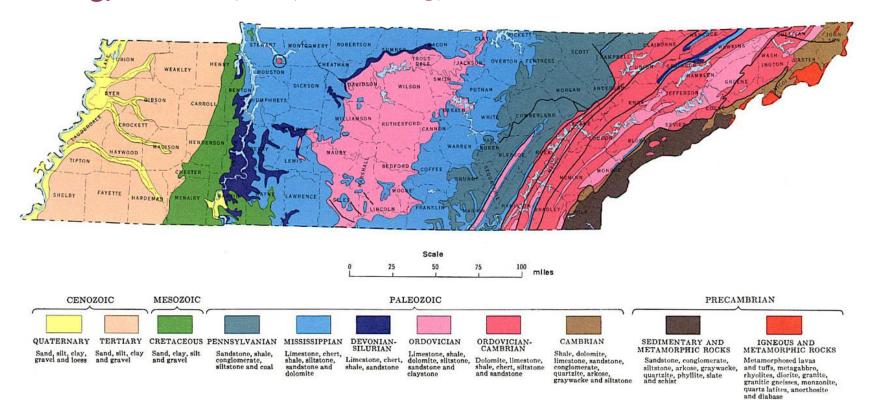
Piedmont is a landform created at the foot of a mountain or mountains by debris deposited by shifting streams.



Landforms / Geological Controls New Mexico, USA (Ritter 1986)

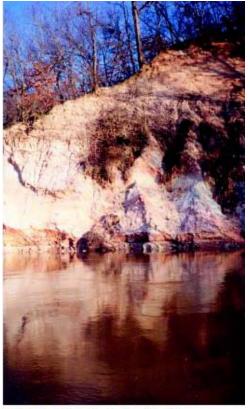
Geology: Tectonics (relief) and Lithology

Geology: Tectonics (relief) and Lithology



Source: Czech Geological Survey 1:50,000 scale

Praha


Vitkov

Geology: Tectonics (relief) and Lithology -- State of Tennessee, USA

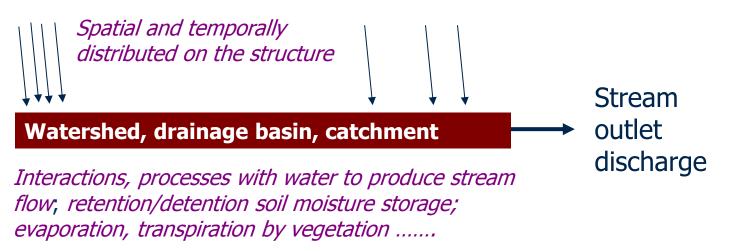
GENERALIZED GEOLOGIC MAP OF TENNESSEE

Geology: Tectonics (relief) and Lithology -- State of Tennessee, USA

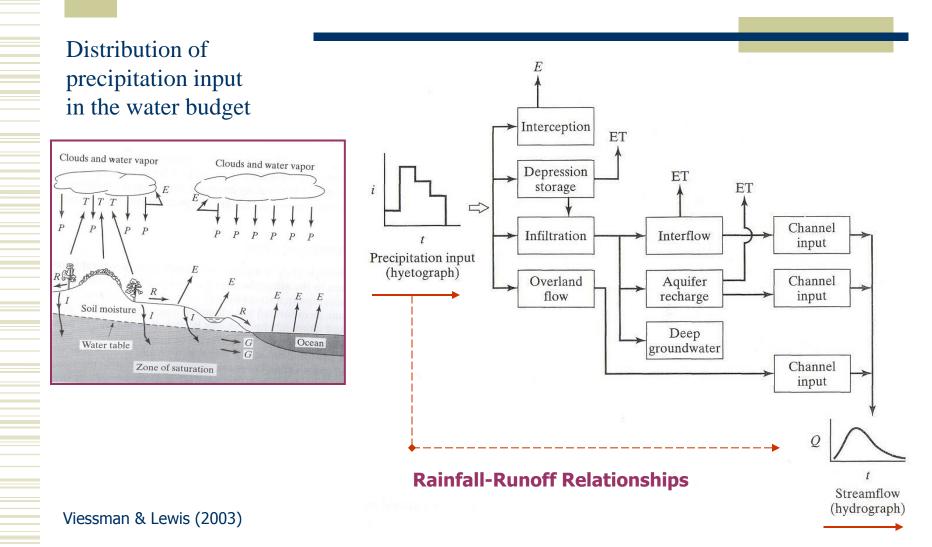
High bluff along Hatchle River showing sand formation.

West TN - Quaternary

Sand-laden tributary, Muddy Creek, near Hatchie Station, Tennessee.

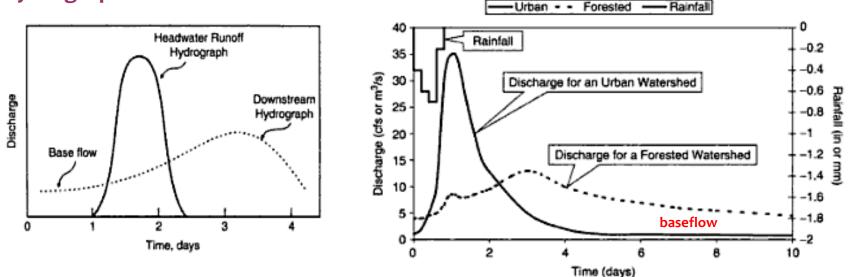


Hydrologic Systems: Climate and Hydrology Dominant Upstream Controls: A Review


Hydrologic System

A hydrologic system is defined as a "**structure**" in space with a boundary, that accepts a "**working medium**" -- water and other inputs (air, heat energy, organic matter, chemical ions) operating internally on them to produce transformed outputs.

Rainfall water


Hydrologic Systems: Climate and Hydrology Dominant Upstream Controls: A Review

Hydrologic Systems: Hydrology and Land Use Dominant Upstream Controls – A Review

Runoff Concepts: Stream Hydrographs

Headwater vs downstream hydrographs

Urban vs forested watershed hydrographs

Wards and Trimble (2003)

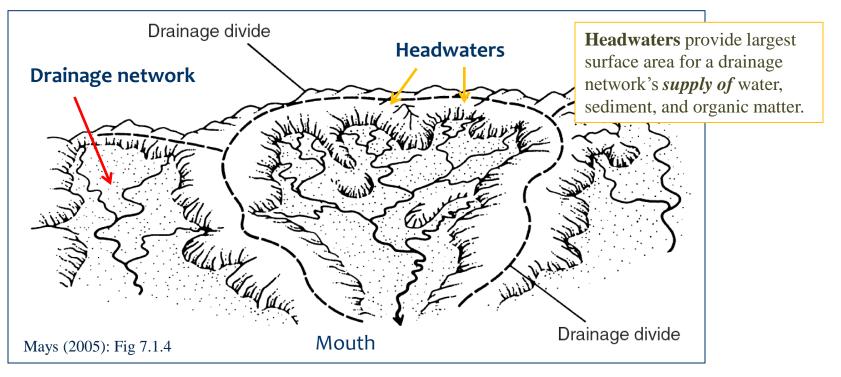
Fluvial Systems: Dominant Controls

- Watersheds are the fundamental spatial unit in fluvial geomorphology
- Drainage network patterns reflect form and process relationships.

Geomorphic character is dependent on:

Geology (valley shape, bank/bed material, knickpoints), watershed and riparian vegetation, channel slope, hydrology (climate), sediment supply and size, watershed position (stream order).

Fluvial Processes: Force vs Resistance Erosion vs Deposition

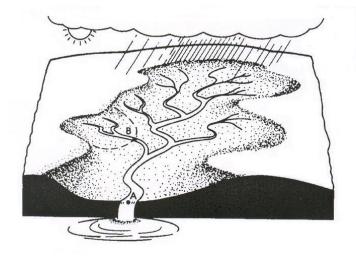


Beaver Creek, Knox County, Mill Run Section

Fluvial Systems: Watersheds

Watersheds:the fundamental unit

A watershed is a topographic area that collects water, sediment and organic matter, and discharges of stream flow with transported materials through an outlet or mouth.


Fluvial Systems: Watersheds

The watershed, the functional unit of all hydrologic and geomorphic analyses.

Watershed geomorphology refers to the physical characteristics of the watershed.

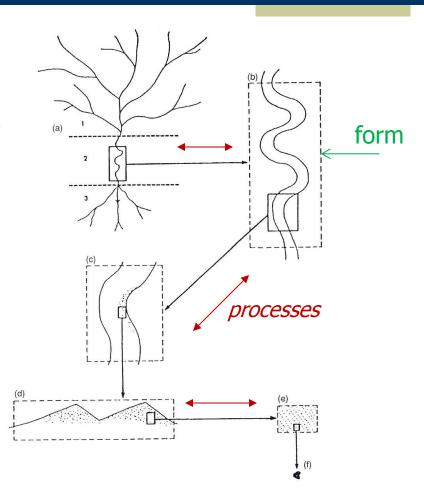
Common measures for watersheds \leq HUC8 <u>Watershed Characteristics</u>:

- 1. Drainage Area
- 2. Length (longest flow path)
- 3. Slope (elevation difference of flow path)
- 4. Shape
- 5. Drainage density (stream length / area)

Fluvial Systems: Watersheds

Watersheds are organized as a **nested hierarchy**, as each small watersheds sets inside a larger one, and it sets inside a larger one and so on

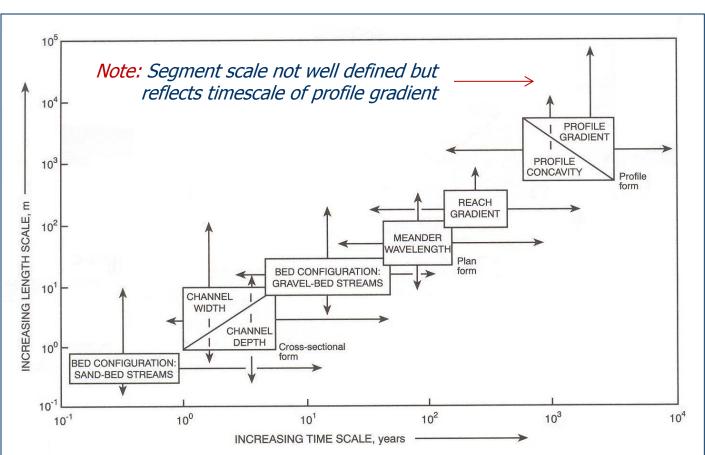
Used by the US Geological Survey: Hydrological Unit Codes (HUC) watershed/stream identification numbers [http://nwis.waterdata.usgs.gov/tutorial/huc_def.html]

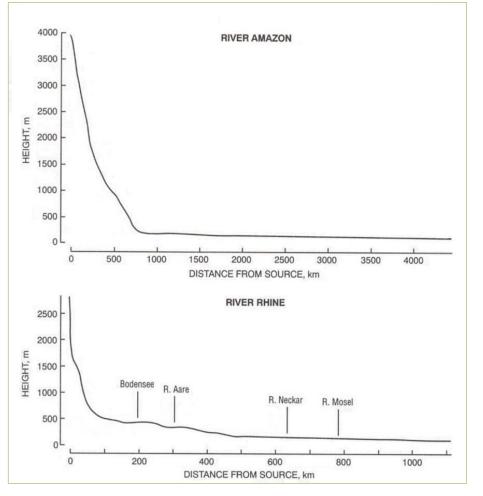

2-digit HUC first-level (region)
4-digit HUC second-level (subregion)
6-digit HUC third-level (accounting unit)
8-digit HUC fourth-level (cataloguing unit)
10-digit HUC fifth-level (watershed)
12-digit HUC sixth-level (subwatershed)

Fluvial Systems: Spatial Scales

Fluvial Systems can consider landforms at different spatial scales with the largest scale starting with the **watershed/drainage network**, and hierarchically reducing in scale to a **segment/valley scale** and/or **reach channel/planform**, **bar unit** (pool-riffle-bar elements), **bedforms**, and then to the channel bed **sediment particle**.

~ hierarchically nested


Schumm 1977, 2005; Frothingham et al. 2002


Fluvial Systems: Spatial Scales

Fluvial Spatial Scaled and Process Timescales:

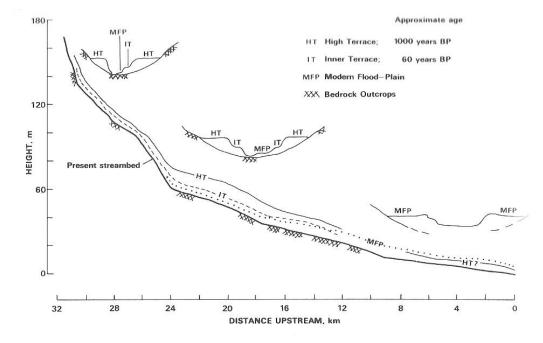
Timescales of various channel form components related to spatial scale of fluvial processes and form adjustment:

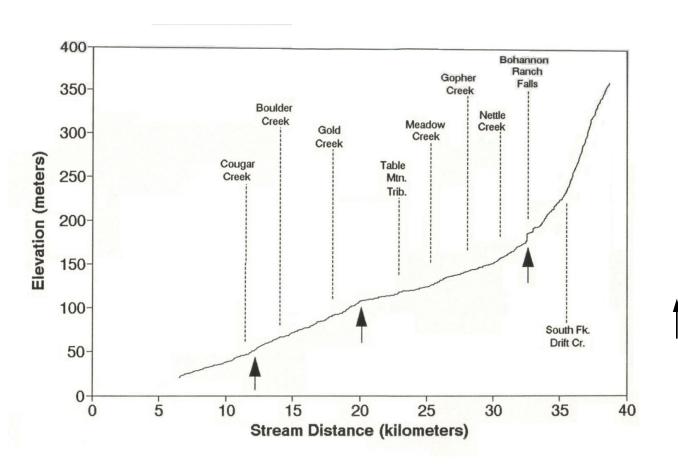
Examples

Watershed Longitudinal Profile

Elevation vs Distance headwaters $0 \text{ m} \rightarrow \text{downstream}$ to mouth

Concave Upward Shape


~ a function of discharge and sediment transport (increase)

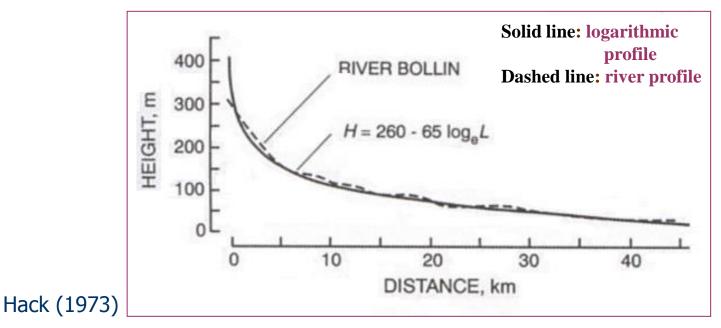

Bed Sediment

 bed material size decreases in downstream direction; abrasion and selective sorting of sediment

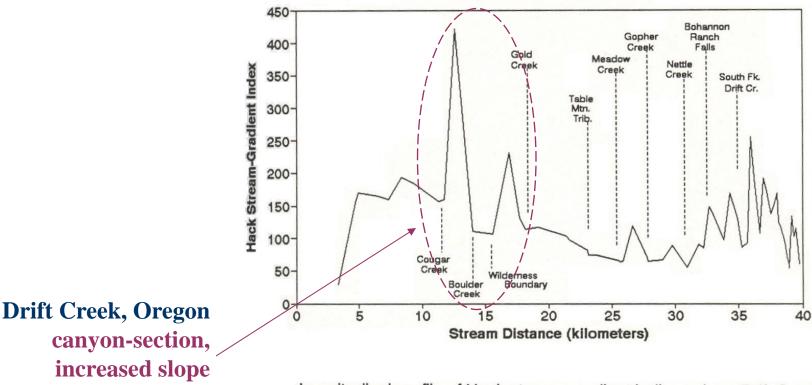
Profile concavity: influence of hardpoints and lithology

- Profiles more concave bed material decreases in size downstream
- Profiles less concave bed material remains constant in size downstream

geologic knickpoints


Drift Creek, Oregon

Longitudinal Profile: Channel Gradient


Concave upward shape quantified by logarithmic profile:

Hack stream-gradient index: $k = (H_1 - H_2)/(\ln L_2 - \ln L_1)$

 H_1 , H_2 ; upstream (up/s) and downstream (d/s) elevations, respectively L_1 , L_2 ; up/s & d/s distances from headwaters datum 0 distance, respectively

Hack Stream-gradient Index

Longitudinal profile of Hack stream-gradient indices along Drift Creek.

Stream Power

Stream Power is the potential energy drop is equal to the work done to the bed and banks. All of the *potential energy* lost as the water flows downstream must be used up in friction or work against the bed: none can be added to *kinetic energy*.

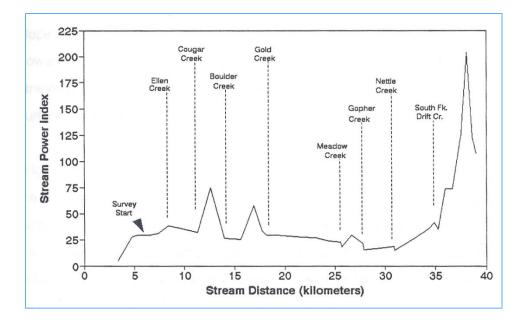
Stream Power = $\Omega = (\gamma \cdot Q \cdot S)$ (specific weight * gravity * discharge * slope)

Unit Stream Power per channel width, where *b* is the width of the channel. Unit Stream Power = $\omega = (\gamma \cdot Q \cdot S)/b$

Unit Stream Power = $\omega = \tau_0 \cdot V$ (τ_0 = boundary shear stress, V = velocity)

 $\tau_0 = \gamma \cdot R_h \cdot S$, where R_h is the hydraulic radius = A/P (area/wetted perimeter) Cross-sectional Area (A) = b·d; where d = flow depth; Q = V/A, and assumes P = b for wide and shallow

Drainage Network: Longitudinal Profile - Stream Power

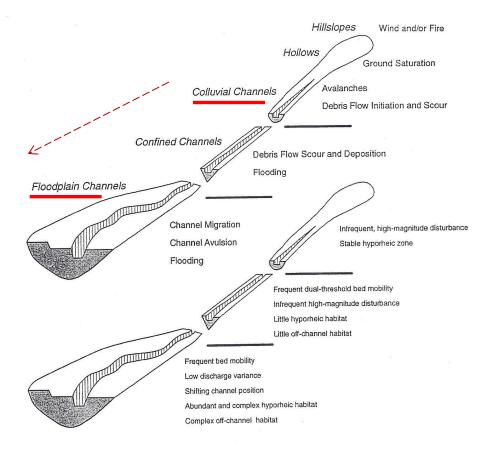

Stream Power = energy (force x length) per unit time

Stream Power is a function of discharge and slope, thus a function of watershed position;

Stream Power = $\Omega = (\rho \cdot g \cdot Q \cdot S)$ (fluid density * gravity * discharge * slope)

Drift Creek, Oregon Stream Power Index = $c \Omega/w$

A "c" coefficient multiplied by stream power per unit channel width, with drainage area replacing Q as a surrogate for discharge.


Longitudinal Profile: Geomorphic Process Continuum

Process Domain Concept

Geomorphic processes change from headwaters to large river corridors.

Processes are also hierarchical structured from watershed scale to stream bed scale.

Geomorphic analog to the River Continuum Concept.

Montgomery (1999)

Fluvial Systems: Classification

Fluvial Geomorphic Classification is the categorization and description of the nature, origin and development of watershed and river landforms.

The fundamental framework of classification is that a geomorphic unit can be classified based collectively on: [DM Haskins, 1998; USFS]

- 1) its origin and development (process);
- 2) its general structure and shape (form);
- 3) measurements of its dimensions and characteristics (morphology);
- 4) the presence and status of observing morphological adjustments (geomorphic generation).

Geomorphic classification systems: form-based vs process-based,

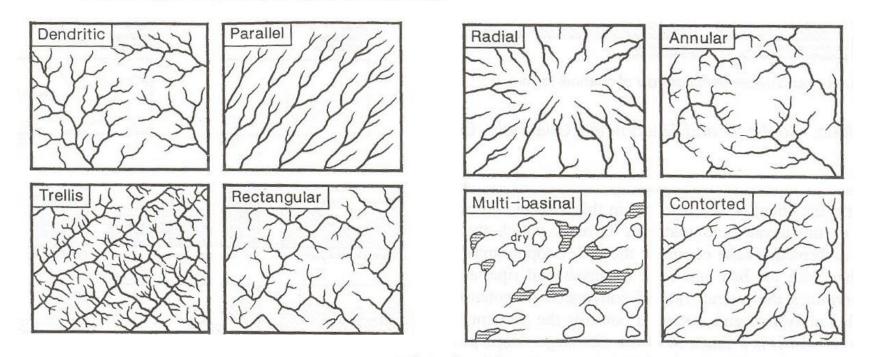
- sometimes difficult to separate.

Lecture 2 focuses on form characteristics and classification

Watershed / Drainage Network Classification

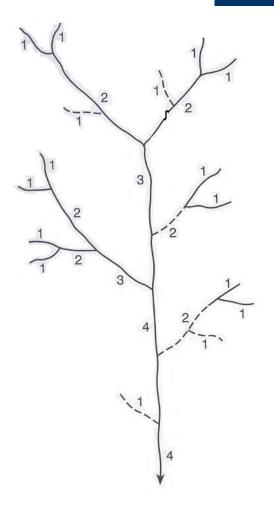
Classification of watersheds / drainage networks includes:

- 1) drainage network patterns a function of geology
- 2) A classification system to denote river/stream size
- 3) Valley types based on geology/climate.


Segments are not well defined in the literature but have been related to *stream power* between major tributary junctions, or at major lithological *slope knickpoints* along the longitudinal profile.

Reflecting on the concept Geomorphic Process Domain, within different Valley Types, different **floodplain forms and processes** occur.

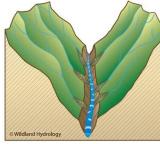
Note: we will revisit floodplain forms and processes in Lecture 4


Drainage Network Classification

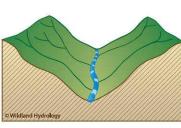
Channel Types and Morphological Classification

Basic drainage patterns (adapted from Howard, 1967)

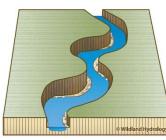
Drainage Network Classification

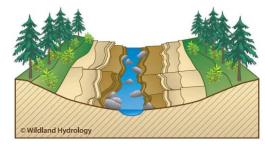

Structure Characteristics:

Stream Order (Strahler 1952) 1st, 2nd, 3rd, 4th


Drainage Density $D_d = \sum L/A_d$

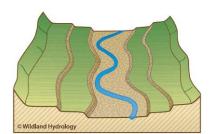
Drainage Network Classification: Valley Types

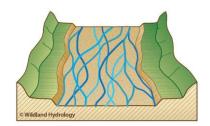

Valley Classification: examples from Rosgen (1996)


Steep Colluvial


Moderate-steep Colluvial

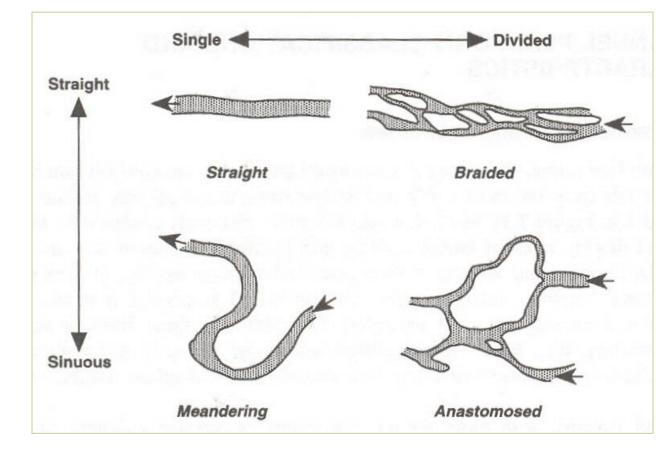
Inner Gorge


Bedrock


Glacial Trough

Alluvial

Terraced Alluvial



Glacial Outwash

Valley quantified (Rosgen 1996) per **Entrenchment Ratio** is a measure of vertical containment described as the ratio of the flood-prone area width to bankfull width.

Reach-scale Channel Patterns: Planform Classification

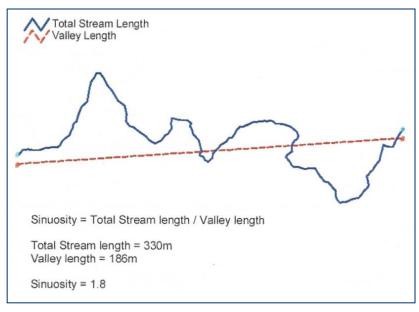
Planforms: Straight, Meandering, Braided, & Anastomosed

(Thorne et al. 1997)

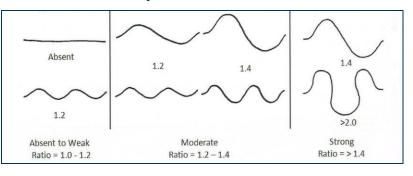
Planforms

Reach-scale Channel Patterns:

Classic descriptive types/characteristics


after Brice 1975 (Thorne et al. 1997)

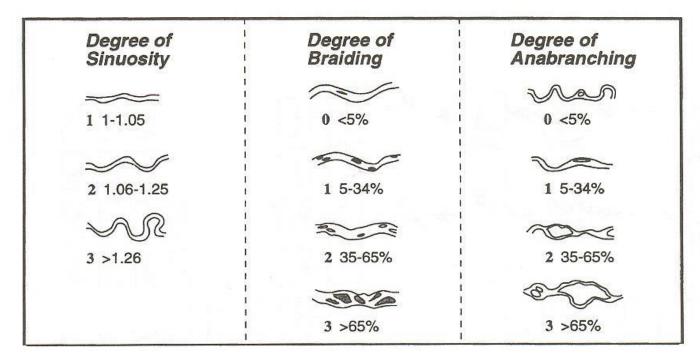
Character of Sinuosity	Character of Braiding	Character of Anabranching
A Single Phase, Equiwidth Channel, Deep	A Mostly Bars	A Sinuous Side Channels Mainly
B Single Phase, Equiwidth Channel	B Bars and Islands	B Cutoff Loops Mainly
C Single Phase, Wider at Bends, Chutes Rare	C Mostly Islands, Diverse Shape	C Split Channels, Sinuous Anabranches
D Single Phase, Wider at Bends, Chutes Common	D Mostly Islands, Long and Narrow	D Split Channel, Sub-paralle Anabranches
E Single Phase, Irregular Width Variation		E Composite
F Two Phase Underfit, Low-water Sinousity		
G Two Phase, Bimodal Bankfull Sinuosity		


Reach-scale Channel Patterns

Channel Pattern Types: Measurement of reach-scale sinuosity

Sinuosity = channel length / valley length

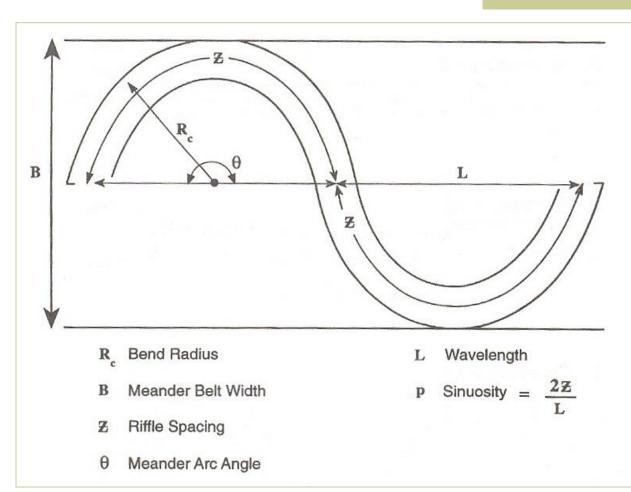
General patterns and relative character of channel sinuosity:



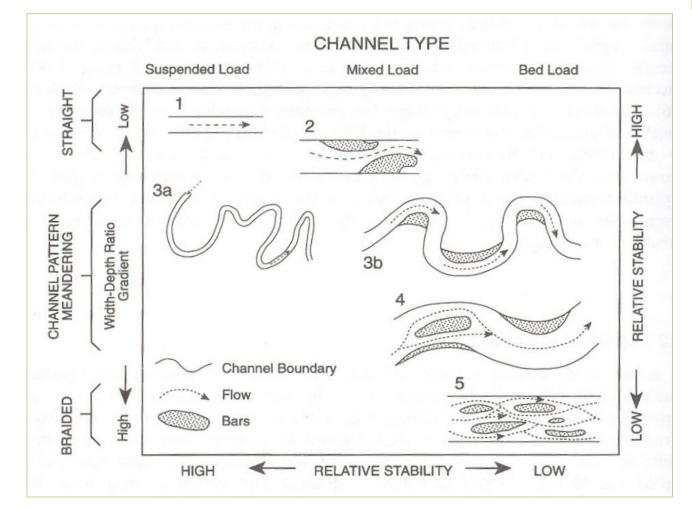
FISRWIG (1998)

Reach-scale Channel Patterns: Planforms

Channel Pattern Types:

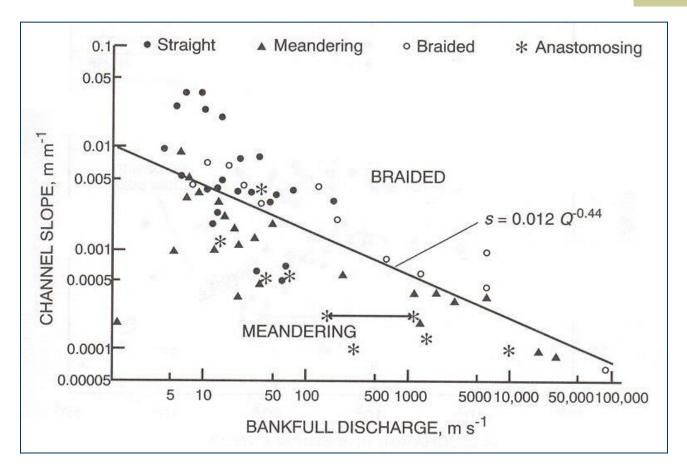

Geomorphic classification, classic descriptions

after Brice 1975 (Thorne et al. 1997)


Reach-scale Channel Patterns

Meander Geometry

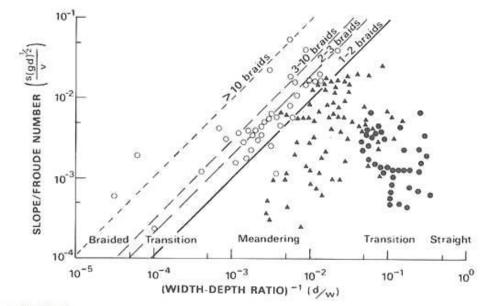
(Thorne et al. 1997)


Reach-scale Channel Patterns: Planforms

Planform type relative to: 1) sediment transport load, 2) width-depth ratio, and 3) channel stability.

(Schumm 1977)

Reach-scale Channel Patterns: Planforms


Leopold and Wolman (1957)

Reach-scale Channel Patterns: Planforms

Slope-discharge relationships to planform types

Note the importance of discharge (velocity), slope, bed material type, and channel cross-sectional form (Width/Depth ratio) (Knighton 1996)

Froude No., $\mathbf{Fr} = V/(gD)^{0.5}$ Ratio of inertia forces to gravitational forces

Reach-scale Channel Patterns

Flow depth (d) to grain size (D) ratio:

Plate 1.1 Small channel (d/D < 1), with large clasts protruding above the water surface (Maligne River, Alberta, Canada).

d/D < 0.1

characterizing form types

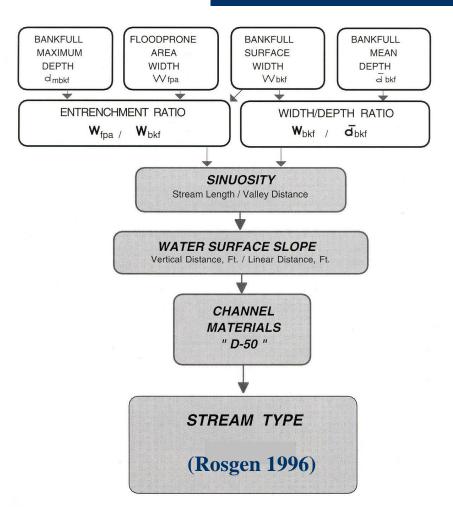
A. Robert (2003)

1 < d/D < 10

Plate 1.2 Example of an intermediate channel ($1 \le d/D \le 10$). Meandering, riffle-pool tream, Rouge River, Ontario, Canada (channel width ≈ 12 m).

Related to channel slope and boundary resistance

d/D > 10


Plate 1.3 Large channel; Squamish River, British Columbia, Canada - d/D > 10; channel width approximately 35 m.

Reach-scale Channel Classification has been used to aid stream restoration design by using analog or reference stream measurements.

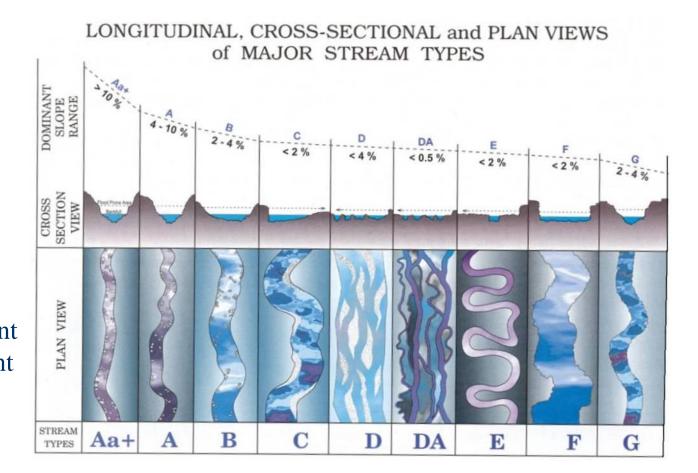
Classifications systems vary with level of process-based morphological concepts --- it has been argued *process* determines *form* so all channel classification schemes represent process-form types.

Three Common Channel Classification Schemes:

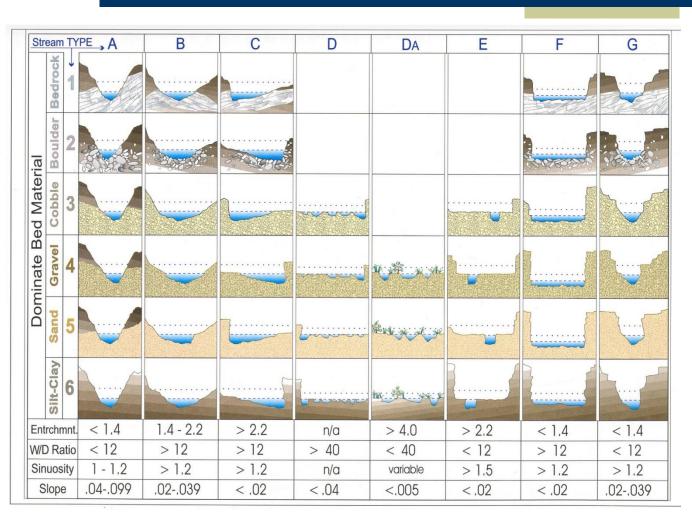
- Rosgen (Natural Channel Design) Classification
- Buffington and Montgomery (Sediment Transport/Supply) Classification
- Downs (Morphological Change) Classification

Rosgen System of Stream Classification

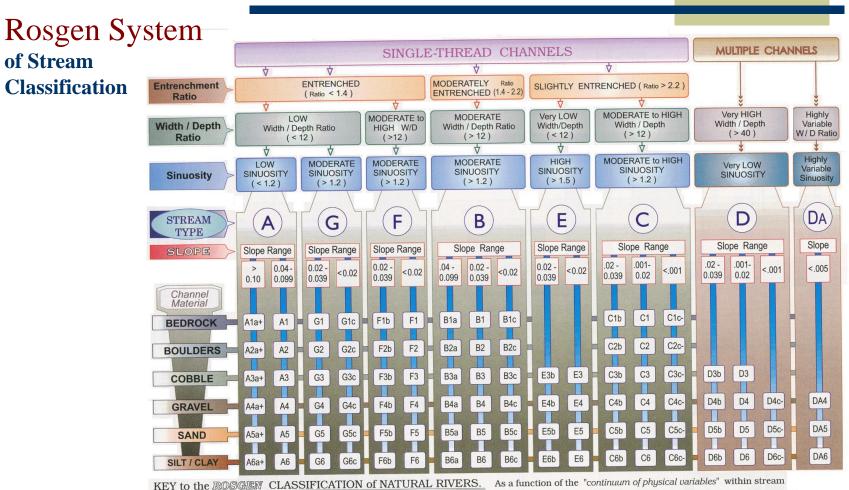
Based on:


- 1. slope
- 2. sinuosity
- 3. Width/depth ratio
- 4. Entrenchment ratio
- 5. bed sediment

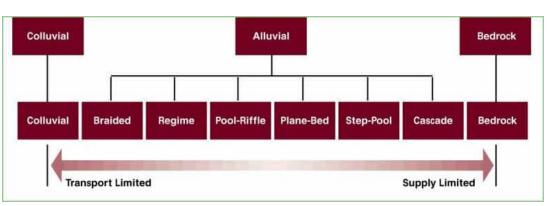
Defines: Stream types A, B, C, D, D_A, E, F,G


Rosgen System of Stream Classification

Based on:
1. slope
2. sinuosity
3. W/D ratio
4. entrenchment
5. bed sediment


(Rosgen 1996)

Rosgen System of Stream Classification

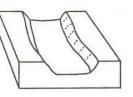

(Rosgen 1996)

KEY to the ROUSCHEM CLASSIFICATION OF NATURAL RIVERS. As a function of the Continuum of physical canadics' while second reaches, values of **Entrenchment** and **Sinuosity** ratios can vary by +/- 0.2 units; while values for **Width / Depth** ratios can vary by +/- 2.0 units.

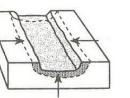
(Rosgen 1996)

Geomorphic Classification of Channel Reaches

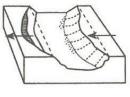
Buffington and Montgomery (1997)

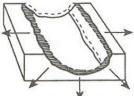

Transport-limited streams are with sediment loads that exceed hydraulic capacity, and hence <u>deposition</u> may be prevalent.

Supply-limited streams have hydraulic capacity beyond supply, and hence scour and <u>erosion</u> may be prevalent.


The steeper channels (step-pool, cascade, and possibly bedrock) transmit high sediment loads and maintain their morphology, while flatter channels (braided, regime, riffle-pool) experience morphological adjustment with increased sediment.

Geomorphic Classification of Channel Reaches


Downs (1995) system *based on* trends and types of morphological change:


S - 'STABLE' No observable indication of morphological adjustment in progress

D - 'DEPOSITIONAL' Consistent decrease in channel width and/or depth

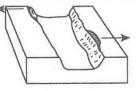
M - 'LATERAL MIGRATION' Migration of most bends, cross-sectional dimensions preserved

E - 'ENLARGING' Consistent increase in channel width and/or depth by erosion

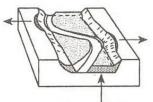
Stable
Depositional
Lateral Migration
Enlarging
Compound
Recovering
Undercutting

(Thorne et al. 1997)

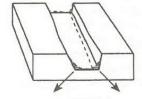
d - 'depositional'

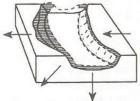

Selective deposition creating

reduced width channel


C - 'COMPOUND'

Aggradation of channel bed with


erosion of channel banks

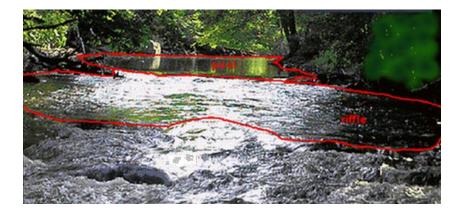

 m - 'lateral mIgration' Initiation of alternating bank erosion in straightened channels or erosion of only sharpest bends

R - 'RECOVERING' Development of a sinuous channel within straightened channels, including selective erosion of outer banks

e - 'enlarging' Initiation of continuous erosion, often at channel toe

U - 'UNDERCUTTING' Continuous erosion and migration of full width channel, coarse inner bank deposits

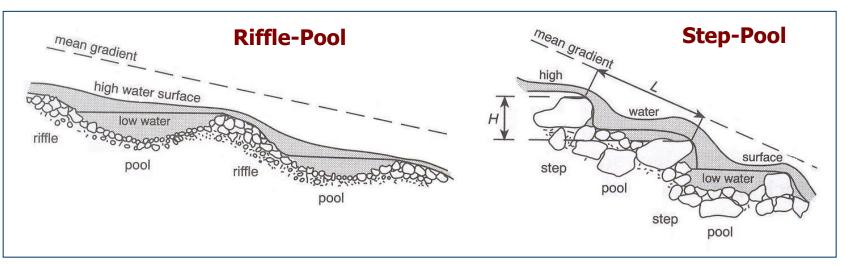
Channel Unit / Bedform Scale


Bar Unit: A hydraulic morphological unit consisting of a pool, riffle, and bar. Riffle-Pool and Step-Pool Sequences: A longitudinal profile through the channel thalweg examining riffle-pool or step pool sequences.

Pool: A relatively deep location in the channel with tranquil water surface during baseflows.

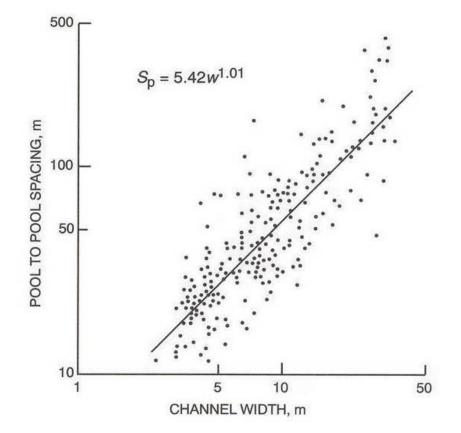
Riffle: A relatively shallow location with fast moving water, turbulent water as observed during baseflows.

Bar: A relatively shallow location in the channel from sediment deposition (e.g., point bar). Thalweg: The corridor (pathway)


longitudinally through channel with the deepest water depth.

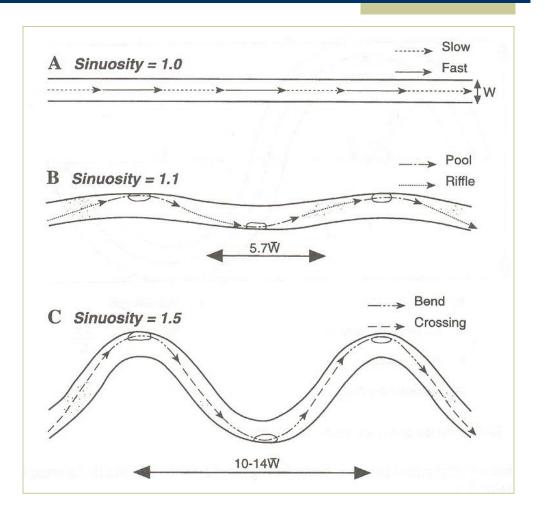
Bedform Configuration: Gravel-bed Rivers

Riffle-Pool Sequence: The development of alternating deeps (pools) and shallows (riffles) is characteristic of both straight and meandering channels with heterogeneous bed materials, containing gravel, in the size range of 2 to 256 mm.


In general, riffle-pool sequences occur with bed slopes < 2%, and step-pool sequences occur with bed slopes > 5%.

Knighton (1998)

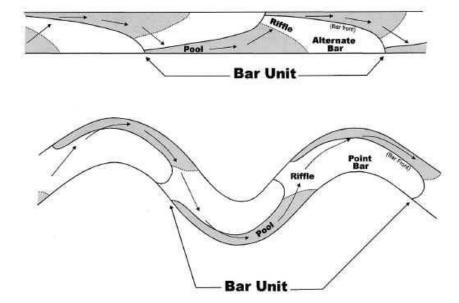
Bedform Configuration: Riffle-pool Sequences


Riffle-Pool Spacing: Average 5-7 channel unit widths from a range of 1.5 to 23.3 channel unit widths.

Bedform- Planforms Relationships

Pool-riffle sequences

Relationships with straight-meandering planforms: sinuosity and flow patterns


(Chorley et al. 1984)

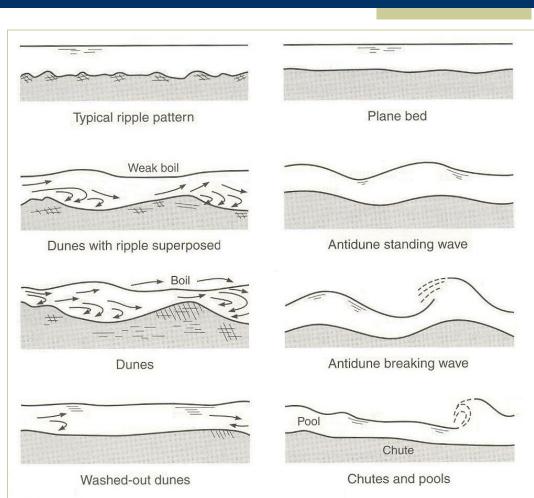
Bedform Configuration – Gravel-bed Rivers

Pools, riffles, and point bars are elements of a morphological structure known as a bar unit (Thompson 1986, Dietrich 1987).

Straight channel: alternative bar

Meandering channel: point bar

Braided channel: mid-channel bar (*multiple bar units - not shown*)


Frothingham & Rhoads (2002)

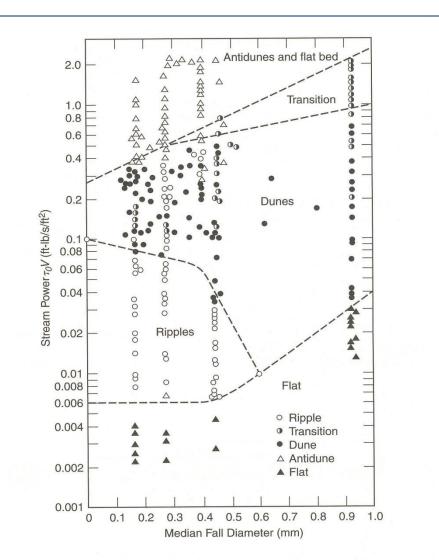
Bedform Configuration: Sand-bed Rivers

Sand Bedforms: defined as irregularities in an alluvial channel bed with respect to a flat bed that are higher than the sediment size itself.

<u>Common Types</u>: Ripple Dune Anti-dune Chute / Bars

(Strum 2001)

Bedform Configuration: Sand-bed Rivers


Bed form	Dimensions	Shape	Behaviour and occurrence
Bar	Lengths comparable to channel width	Variable	 Five main types: (1) Point-bars: form particularly on the inner bank of meanders (2) Alternate bars: distributed periodically along one and then the other bank of a channel (3) Channel junction bars: develop where tributaries enter a main channel (4) Transverse bars (include riffles): may be diagonal to the flow (5) Mid-channel bars: typical of braided reaches
Ripples	Wavelength less than 0.6 m; height less than 0.04 m	Triangular profile; gentle upstream slope, sharp crest and steep downstream face	Generally restricted to sediment finer than 0.6 mm; discontinuous movement; at velocities much less than that of the flow
Dunes	Wavelength of 4 to 8 times flow depth; height up to $\frac{1}{3}$ flow depth; much larger than ripples	Similar to ripples	Upstream slope may be rippled; discontinuous movement; out of phase with water surface
Plane bed			Bed surface devoid of bed forms; may not occur for some ranges of depth and bed material size Upper regime of
Antidunes	Relatively low height dependent on flow depth and velocity	Sinusoidal profile; more symmetrical than dunes	Less comon than dunes, occurring in steep steams; in phase with surface water waves; bed form may move upsteam, downstream or
(Knighto	n 1998)		remain stationary

Bedform Configuration: Sand-bed Rivers

Identifying bedforms as a function of flow and sediment properties:

Simons & Richardson (1966) *plots* **stream power** $(\tau_0 \cdot \mathbf{V})$ *Versus* **sediment size**.

Note: $(\tau_0 \cdot V)$ in ft-lb/s/ft²

Prediction of bed form type from sediment fall diameter and stream power (Simons and Richardson 1966).

Strum (2001)

Bed Sediment Particles

Bed Sediment Characterization

Particle Size Classes:

Size classification as defined by the American Geophysical Union.

Each size class representing a geometric series, in which the maximum and minimum sizes differ by a factor of 2.

Diameter designated as either d_s or D, depending on text source.

D50 = median particle diameter from sample/survey

Sturm (2001)

TABLE 10-1

Sediment grade scale (AGU)

Class name	Size range, mm	
Very large boulders	4,096-2,048	
Large boulders	2,048-1,024	
Medium boulders	1,024-512	
Small boulders	512-256	
Large cobbles	256-128	
Small cobbles	128-64	
Very coarse gravel	64-32	
Coarse gravel	32-16	
Medium gravel	16-8	
Fine gravel	8-4	
Very fine gravel	4-2	
Very coarse sand	2.0 - 1.0	
Coarse sand	1.0-0.5	
Medium sand	0.50-0.25	
Fine sand	0.250-0.125	
Very fine sand	0.125-0.062	
Coarse silt	0.062-0.031	
Medium silt	0.031-0.016	
Fine silt	0.016-0.008	
Very fine silt	0.008-0.004	
Coarse clay	0.004-0.002	
Medium clay	0.002-0.001	
Fine clay	0.0010-0.0005	
Very fine clay	0.0005-0.00024	

Bed Sediment Particles

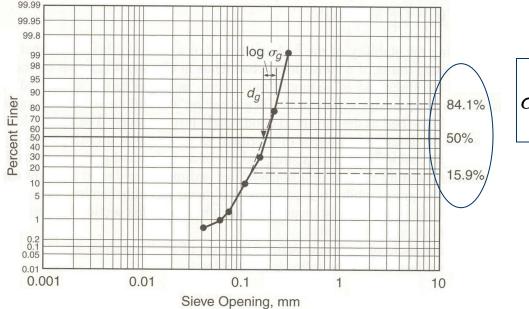
Bed Sediment Characterization

Wolman Pebble Count:

Multiple field methods to collect 100 sediment samples to perform statistics to obtain D50 or other percentile: Uniform grid, cross-sections, zig-zag pattern along the channel, and random- walk end-of-toe approach.


Measure particles along the (B) intermediate axis.

The red line drawn in the image indicates the approximate path the students chose while conducting their pebble count within a 100-meter reach of <u>Skaggs Run</u>.


A = LONGEST AXIS (LENGTH) B = INTERMEDIATE AXIS (WIDTH) C = SHORTEST AXIS (THICKNESS)

Bed Sedimet Particles

Particle (Grain) Size Distribution

 d_{50} = median particle size d_g = geometric mean size σ_g = geometric standard deviation Wolman Pebble Count: Common Collection method of mixed sediment loads.

$$\sigma_g = \frac{d_{84.1}}{d_g} = \frac{d_g}{d_{15.9}} = \left(\frac{d_{84.1}}{d_{15.9}}\right)^{1/2}$$
$$d_g = \left(d_{84.1}d_{15.1}\right)^{1/2}$$

Sturm (2001)

- - -