143SRPP Stream Revitalization: Principles & Practices

LECTURE 5 Fluvial Geomorphology

Fluvial Processes: Equilibrium Concepts

Winter 2019 Semester

21 October 2019

CTU in Prague - Faculty of Civil Engineering The Department of Landscape Water Conservation

"Gravity is a Constant!!" Andrew Simon

- The physics of erosion and deposition are the same wherever you are...no matter what hydro-physiographic province.
- Channel response of a stream type or river form is a matter of *quantifying available force (stream power), and resistance properties of the channel boundary.*
- **Channel adjustment** is driven by an imbalance between the driving and resisting forces ---- out of a *dynamic equilibrium* state.
- Differences in rates and magnitudes of adjustment, sediment transport rates and ultimate channel forms are a matter of defining those forces and resistance characteristics.....deterministically or empirically.

Fluvial Systems: Forms and Processes

Fluvial Process Timescales:

Timescales of various channel form components related to spatial scale of fluvial processes and form adjustment.

Dominant controls of channel form adjustment, independent variables include: climate, geology, soils, vegetation, and basin physiography.

Knighton (1998)

Lane's Law stable channel balance: $Q_s \cdot d_s = Q \cdot S$

The dominant controls of channel form adjustment include discharge and sediment load (*notably* bed material load).

Hey (1992) adds bank sediment and vegetation to the above set of independent variables (dominant controls).

Thorne et al. (1997) provides a n qualitative model of form-process interrelationships:

Begins with hydrology: Discharge of River

Hey (1997) identifies *nine* degrees of freedom for **adjustment variables** in alluvial channels defining form through erosion and deposition.

The 9 variables are: average bankfull width (W), depth (d), maximum depth (d_m), bedform amplitude (Δ) and wavelength (λ) of bedforms, slope (S), average velocity (V), sinuosity (ρ), and meander arc length (z).

	Degrees of freedom and gov	verning process equation	* (after Hey 1982a)		
Degrees of freedom	Dependent variables	Fixed variables	Independent variables	Type of flow	Governing equations
1	V	$d, S, W, d_{\rm m}, \lambda, \Delta, p, z$	0	Fixed bed	1 Continuity
2	V, d	S, W, d_m , λ , Δ , p, z	$\widetilde{Q}, D, D_r, D_1$	Fixed bed	+2 Flow resistance
3	V, d, S	$W, d_m, \lambda, \Delta, p, z$	$Q, Q_{\rm s}, D, D_{\rm r}, D_{\rm l}$	Mobile bed	+ 3 Sediment transport
5	$V, d, S, W, d_{\mathrm{m}}$	λ, Δ, p, z	$Q, Q_{\rm s}, D, D_{\rm r}, D_{\rm l}$	Mobile bed	+ 4 Bank erosion + 5 Bar deposition
7	$V, d, S, W, d_{\rm m}, \lambda, \Delta$	p, z	$Q, Q_{\rm s}, D, D_{\rm r}, D_{\rm l}$	Mobile bed	+ 6 Bedforms + 7 Bedforms
9	$V, d, S, W, d_{\rm m}, \lambda, \Delta, p, z$	-	$Q, Q_{\rm s}, D, D_{\rm r}, D_{\rm l}, S_{\rm v}$	Mobile bed	+ 8 Sinuosity+ 9 Riffle spacing/meander arc length

*Average flow velocity = V; mean depth = d; channel slope = S; width = W; maximum flow depth = d_m ; bedform wavelength = λ ; bedform amplitude = Δ ; sinuosity = p; meander arc length = z; discharge = Q; sediment discharge = Q_s ; characteristic size of bed, right and left bank sediment = D, D_r , D_l ; valley slope = S_v .

Channel Form Adjustment: Dynamic Equilibrium

Concept of Dynamic Equilibrium:

True stability in a river system is never possible, a function of discharge and sediment load vary over time and space.

The concept of equilibrium is incorporated into both the hydraulic engineering and fluvial geomorphology literature. Hydraulic engineers refer to **regime theory**, in which stable channel design approaches have been developed based on empirical equations related to bed shear stress and incipient motion of sediment particles. Fluvial geomorphologists refer to it as a **graded river**.

Graded river can be defined as one, in which over a period of years, slope is delicately adjusted to provide, with available discharge and prevailing channel characteristics, just the velocity required for the transportation of the load supplied from the drainage basin.

Dynamic Equilibrium

Concept of Dynamic Equilibrium:

The important characteristic of open systems is their ability for selfregulation. Negative feedback mechanisms moderate the effects of

external factors in such as way that a system can maintain a state of equilibrium, in which a degree of channel stability is established.

Dominant Discharge:

The frequent reference made with respect to a mean "equilibrium" state, which reflects the adjustment of channel geometry to imposed conditions suggests that a dominant or channel-forming discharge may be largely responsible for that geometry.

Dominant discharge has been equated with *effective discharge* and *bankfull discharge*, which has been concluded that the these discharges are approximately equal to an 1- to 2-year flood recurrence interval.

Dominant Discharge: a flow event (single return frequency; stage) that determines the morphological characteristics of a channel representing an "equilibrium" between process and form, i.e., the flow stage that controls the channel form more than any other flow regime.

Effective Discharge: the flow event (return frequency) that performs the most geomorphic work, i.e., that transports the most sediment.

Bankfull Discharge: on an annual flood series, bankfull discharge represents a stage that fills the channel; it can be difficult to identify, but has been suggested as the height to the floodplain level, and/or the height of perennial vegetation, particularly trees.

Effective Discharge: Magnitude-Frequency Idea

Wolman and Miller (1960)

Bankfull Discharge: Multiple hydrogeomorphic indictors

Bankfull indicator	Reference		
Minimum width-to-depth ratio	Wolman (1955) Pickup and Warner (1976)		
Highest elevation of channel bars	Wolman and Leopold (1957)		
Elevation of middle bench in rivers with several over- flow sections	Woodyer (1968)		
Minimum width-to-depth ratio plus a discontinuity (vegetative and or physical) in the channel boundary	Wolman (1955)		
Elevation of upper limit of sand-sized particles in boundary sediment	Leopold and Skibitzke (1967)		
Elevation of low bench	Schumm (1960); Bray (1972)		
Elevation of active flood plain	Wolman and Leopold (1957) Nixon (1959)		
Lower limit of perennial vegetation	Schumm (1960)		
Change in vegetation (herbs, grass, shrubs)	Leopold (1994)		
A combination of: • elevation associated with the highest depositional features	Rosgen (1994)		
 break in bank slope change in bank material small benches and other inundation features staining on rocks 	Data Method: USGS Flow Station, stage at 2-yr return frequency		

NRCS: Part 654 Nat'l Engr. Handbook Table 5.1

Bankfull Discharge: Multiple hydrogeomorphic indictors

NRCS Web-link

NRCS Web-link

Bankfull Discharge: Summary of stream conditions that affect bankfull stage indicators:

NRCS: Part 654 Nat'l Engr. Handbook Table 5.11

Process	Effect on bankfull indices
Sediment transport capacity of the reach exceeds the sediment supply, but the channel grade is stable	Bankfull indices may be relics of extreme flood events, and may indicate a bankfull flow that is too high
The sediment transport capacity of the reach exceeds the sediment supply to the reach, and the channel grade is lowering	The former flood plain is in the process of becoming a terrace. As a result, bankfull indices may indicate a flow that is too high
The sediment transport capacity of the reach is less than the sediment supply	The existing flood plain or in chan- nel deposits may indicate a flow that is too low
Erosion and/or deposition may have occurred on the bed and banks	Bankfull indices may be missing or may reflect the large flow event
Sediment transport capacity may not be in balance with sediment supply. The channel may be aggrad- ing or degrading. The reach may be functioning as a threshold channel	Bankfull indices may be relics of previous channel, artifacts of the construction effort, embryonic, or missing altogether
	Process Sediment transport capacity of the reach exceeds the sediment supply, but the channel grade is stable The sediment transport capacity of the reach exceeds the sediment supply to the reach, and the channel grade is lowering The sediment transport capacity of the reach is less than the sediment supply Erosion and/or deposition may have occurred on the bed and banks Sediment transport capacity may not be in balance with sediment supply. The channel may be aggrading or degrading. The reach may be functioning as a threshold channel

Channel Form Adjustment: Sediment Supply/Transport

Supply vs. Transport Capacity

Every sediment particle that passes a given stream cross section must satisfy the following two conditions:

- 1. It must have been eroded somewhere in the watershed above the cross section.
- 2. It must be transported by the flow from the place of erosion to the cross section.

Limiting the Rate of Sediment Transport

- 1. The transport capacity of the stream.
- 2. The availability or supply of the sediment material in the watershed.

Julien (1998)

Channel Form Adjustment: Catastrophic Geomorphology

Catastrophic geomorphology is chiefly about catastrophic events that affect regional landscapes, including riverine corridors.

Processes that fashion the landscape act continually and gradually over thousands of years. On rare occasions, they act briefly with great force and suddenness.

Hancock and Skinner (2003)

Major flood events: Channel forming events

USGS Mt. St. Helens, WA (1980)

The major components of channel form at *different planes* of channel adjustment:

- **1.** planform (e.g., straight meanders),
- 2. longitudinal profile, slope,
- 3. cross-sectional area,
- **4.** bed configuration (e.g., pool-riffle sequence),

Knighton (1998)

The major components of channel form at *different planes* of channel adjustment:

- Channel planform (planimetric geometry): the form of the channel when viewed above, e.g., straight, meandering, and braided.
- **2.** Longitudinal profile (slope): the gradient of a stream at the reach and the longitudinal scales.
- **3.** Cross-sectional area: the size and shape of a channel in the cross-profile either at a point or as a reach average.
- **4.** Bed configuration: the distinct sequence of forms molded in the bed of particularly sand- and gravel-bed streams (e.g., pool-riffle sequence).

Slope and channel pattern occur in the same plane indicating that, in the short term at least, adjustment of the latter is one way on modifying slope. Slope <=> planform. Knighton (1998)

Equilibrium Cross-Section:

Rivers with erodible boundaries flow in self-formed channels which, when subject to relatively uniform controlling conditions, are expected to show a consistency in form, or average geometry, adjusted to transmit the imposed water and sediment discharges. Average geometry is defined by hydraulic geometry variables.

Hydraulic Geometry Main Variables :

Width: $W = aQ^b$ Depth: $D = cQ^f$ Velocity: $V = kQ^m$

Because of Continuity: $Q = W \cdot D \cdot V$; $a \cdot c \cdot k = 1$ and b + f + m = 1

Hydraulic Geometry relationships have been developed for crosssectional characteristics and flow discharge include:

1. **Downstream** Hydraulic Geometry $A \rightarrow B$ and $C \rightarrow D$ 2. **At-a-Station** Hydraulic Geometry $A \rightarrow C$ and $B \rightarrow D$

Downstream Hydraulic Geometry:

Relate downstream changes in flow geometry to a discharge with constant flow frequency, *usually bankfull*, dominant discharge, or mean annual discharge.

Cross-sectional form adjusts to accommodate the discharge and sediment load supplied from the drainage basin, within the additional constraints imposed by boundary composition, bank vegetation, and valley slope.

Channel dimensions are not arbitrary adjusted, but are adjusted through the processes of erosion and deposition, to the quantity of water moving through the cross-section so the channel contains all but the highest flows.

Knighton (1998)

Downstream Hydraulic Geometry:

Application of downstream hydraulic geometry principles as applied by Rosgen (1996) for river restoration – this information is commonly referred to as a **"regional curve"** by designers.

Downstream Hydraulic Geometry: Regional Curve for the Ridge and Valley Physiographic Province

Bankfull Cross-sectional area vs drainage area

Brady McPherson (2011)

Downstream Hydraulic Geometry: Hey and Thorne (1986) use the empirical approach and extends the original Leopold and Maddock (1953) formulas as:

 $w = 4.33 Q_{h}^{0.50}$ **Width** Type I - Grassy Banks: $w = 3.33 Q_{h}^{0.50}$ Type II - 1-5% Tree/Scrub Cover: Type III – 5-50% Tree/Scrub Cover: $w = 2.73 Q_{h}^{0.50}$ Type IV - > 50% Tree/Scrub Cover: $w = 2.34 Q_{b}^{0.50}$ $d = 0.22 Q_b^{0.37} D_{50}^{-0.11}$ **Depth** Average $d_{\rm max} = 0.20 Q_b^{0.36} D_{50}^{-0.56} D_{84}^{0.35}$ Maximum $Q_{\rm b} = bankfull$ discharge Slope $s = 0.087 Q_{b}^{-0.43} D_{50}^{-0.09} D_{84}^{0.84} Q_{sbl}^{0.10}$ D = bed material size (mm) $Q_{sbl} = bedload discharge$

At-a-Station Hydraulic Geometry:

Unlike downstream hydraulic geometry, which deals with spatial variation in channel properties at some reference discharge, at-a-station hydraulic geometry deals with temporal variations in flow variables as discharges fluctuates at a cross-section, usually for a range of discharges up to bankfull.

Simon (1995)

STAGE I Premodilied

STAGE II Constructed

STAGE III Degradation

STAGE IV Degradation and widening

STAGE V Aggradation and widening

STAGE VI Quasi equilibrium

Water Slumped material

Scale is relative

RESTABILIZATION STAGE

Six stages of channel evolution identified starting with a premodified state, then disturbed, and followed by channel adjustment reaching a new equilibrium state.

Six stages are as follow:

- 1. Premodified stable channel, lateral aggradation
- 2. Constructed disturbed channel
- 3. Degradation channel incision, basal erosion on banks
- 4. Threshold basal erosion on banks; bank failure
- 5. Aggradation sediment aggradation, meander development
- 6. Restabilization sediment aggradation; stable channel

Six Stages of Channel Evolution from predisturbed, disturbed, to natural recovery

NRCS: Part 654 Nat'l Engr. Handbook Figure 3.4b

Six Stages of Channel Evolution Model: Knickpoint/ Head-cut Migation

NRCS: Part 654 Nat'l Engr. Handbook Figure 3.4b

(2014)

