143ESP - Soil Physics for Engineers

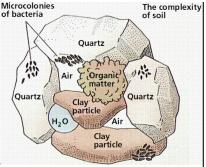
September 19, 2022

Jakub Jeřábek

how to contact me:

- jakub.jerabek@fsv.cvut.cz
- MS Teams
- consultation hours: none, let me know by email

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


• room: B670

all materials at storm.fsv.cvut.cz/.../soil-physic-for-engineers

1. Soil science

Soil Science

Soil Science deals with soil as a natural resource on the surface of the earth including soil formation, classification and mapping; physical, chemical, biological, and fertility properties of soils; and these properties in relation to the use and management of soils.

Source http://www.cartage.org.lb

Pedology soil genesis, morphology, classification, structure, texture,... **Soil chemistry**

Soil Biochemistry

Soil physics studies the properties and processes of materials in the soil from the physical description of soil particles, soil aggregates, into the storage and transport phenomena of water, gas, heat, and solute in soil.

- soil mechanics
- soil hydrology(vadose zone hydrology or hydropedology)

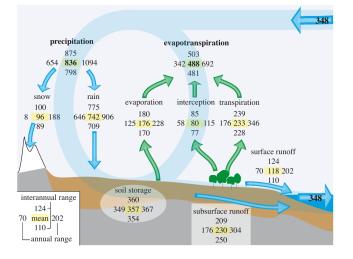


Figure 1.1. Schematic of global terrestrial water cycle [after Dirmeyer et al. 2006]. The numbers have been calculated from simulations of the 10-year period 1986-1995 by 15 different global circulation models. In addition to the average numbers for the entire period (yellow rectangles), the range of fluctuations within and between years is indicated. Fluxes are in mm y⁻¹, soil storage is in mm. The numbers represent averages over the continental area, excluding Antarctica. With an area of $134 \cdot 10^6$ km², a flux of 1 mm y⁻¹ corresponds to a flow of 134 km³y⁻¹.

Soil Physics; Lecture Notes; v2.2 β , Autumn 2012; Kurt Roth

Covered topics

- Theory and application of water and miscible substances transport in the soil.
- Heterogeneity and variability of soil hydraulic characteristics
- Conservative transport, advection, dispersion, characteristics of the dispersion
- Description of chemical reactions, equilibrium and kinetic sorption.

◆□▶ ◆御▶ ◆注▶ ◆注▶ … 注…

• Modeling of transport process.

12 practicals

- Soil properties (today)
- Soil hydraulic properties and transport physics (1/3)
 - retention curve, unsaturated hydraulic conductivity
 - transport governing equations
- 1D modeling of water and miscible substances transport (1/3)
- 2D and 3D modeling of water and miscible substances transport (1/3)

《曰》 《聞》 《臣》 《臣》 三臣 …

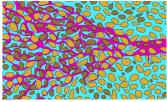
Conditions for passing the practicals

- Complete and hand in assignments in practicals.
- Hand in two larger homework's.
- Presence at practicals a maximum of 3 absences are allowed (assignments have to be finished anyway).

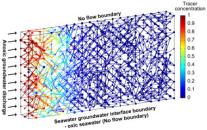
<ロト <回ト < 注ト < 注ト = 注

Hand in your work at the end of each practical or via email jakub.jerabek@fsv.cvut.cz with subject: **143ESP**

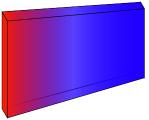
Soil characteristics



3. Soil characteristics


Soil characteristic: continuum approach

Soil characteristic: continuum approach


Real porous media (Li et al., 2019)

Discrete approach

Continuous approach

Soil characteristic: continuum approach

▲口▶ ▲圖▶ ▲理▶ ▲理▶ 三語

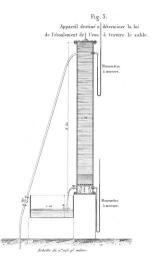
Soil characteristics

(dry) Bulk density:	$\rho_b = \frac{m_s}{V_T}$	$[kg/m^3, g/cm^3]$		
(wet, actual) Bulk density:	$\rho = \frac{m_T}{V_T}$	$[kg/m^3, g/cm^3]$	m _s	Weight of dried soil
Density of soil particles:	$\rho_s = \frac{m_s}{V_s}$	$[kg/m^3, g/cm^3]$	V_T	Volume of sample
Porosity:	$n = \frac{V_p}{V_T}$	[-,%]	V_s	Volume of soil particles
Volumetric water content:	$\theta = \frac{V_w}{W}$	$[m^3/m^3, cm^3/cm^3]$		in the sample
Saturated VWC	VI		V_p	Volume of pores
Saturated VVVC:	$\theta_s = \frac{\pi}{V_T}$	$[m^3/m^3, cm^3/cm^3]$		in the sample
Residual VWC:	$\theta_r = \frac{V_w}{V_T}$	$[m^3/m^3, cm^3/cm^3]$	V_w	Volume of water
Degree of saturation:	$S_w = \frac{V_w}{V_p}$	[-,%]		in the sample
(Effective VWC)	(θ_e)			

3. Soil characteristics

Soil characteristic: continuum approach

Darcy's law


• Henry Darcy (1856)

• Water infiltration through sand column in the water supply system in the city of Dijon

Darcy's law

$$q = -K_s \frac{dH}{dI}, \quad v = q/n$$

q - darcy flux [m/s] K_s - saturated hydraulic conductivity [m/s] H - pressure gead [m] l - length [m]v - mean porous flow velocity [m/s]

イロト イヨト イヨト イヨト

You collected several soil undisturbed samples in the field. Samples were taken from several depths in the soil profile. The lab fills in a form with your results. You need to:

- 1. calculate soil characteristics (θ , ρ_b , n) based on the data in the form (find form in figure 1),
- 2. plot calculated soil characteristics as a function of depth.

HINT: Height of the cylinder is 6 cm. Diameter of the cylinder is 5.5 cm.

	Stan			hkosti a (é hmotnosti	
1. den - sycení vzorků vodou			2. den - sušení vzorků při 105°C			 den - vážení suché půdy a válečku 	
Vzorek č.	m _{sit suchá}	minit	m _{vätenka}	m _{sat}	m _{sit sat}	m _{suš}	m _{váleček}
VIOTER C.	(g)	(g)	(g)	(g)	(g)	(g)	(g)
1100-707 1	0,83	352,98	1368	338,22	1,74	323,24	111,45
HUNG-177 2		344,33	18,30	395,60	1,86	329,61	146,97
LM-TOP 3		824,43	5144	357,00	2,24	291,90	112,07
AME-177 4	0.94	355,47	22,90	399,05	2,05	334,94	112,20
MUK-TOP S	1.00	361,04	1334	395,34	2,23	333,93	MM,69
NUC-TTP 6	0921	318,52	24,07	373,52	1,44	305,06	111,52
MR-24-51	684	391,35	12,86	422,24	1,60	37218	111,46
10-24-33	10,86	420,89	38,10	H63,62	2,19	41325	146,82
40.25-52	0.91	384195	21,43	418,99	2,28	366101	111,70
1 42.25-9	3 0,94	428,57	18/12	455,32	2,09	406,80	146,83
1 40-28-24	0.89	382, Kg	del, 64	418,21	1,8X	365,61	111, 82
2 40 - 46 - 3	2 0.73	390,34	18,49	415,94	1,63	363,38	111,66
3 64 - 41 - 1	9 1,26	423,51		456,32	2,40	415,63	146,46
y pe-49-2	105		18/13	413,21	2,30	361,13	111132

Figure 1: Form with weighed samples.

data at storm.fsv.cvut.cz/.../soil-physic-for-engineers

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Figure 2: Samples in dryer

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - の��

Piezometric data at locations A and B with mutual distance of 500 m are shown in the table below. Confined groundwater table is in homogeneous material with hydraulic conductivity of 0.05 cm/s and porosity of 30%

- 1. Calculate the hydraulic gradient between the piezometers and define the direction of the flow.
- 2. Infer the time that it takes for the water to flow between piezometer A and B (in years)

Piezometer	altitude	GWL bellow land surface
А	120 m	33 m
В	110 <i>m</i>	25 m