Transport uniklého kontaminantu ze skládky do

řeky.

Simulujte transport kontaminantu do přilehlé řeky. Kontaminant o koncentraci 1 mmol/cm2 se šířil do půdy po dobu 100 dnů kvůli závadě na drenážní trubce. Závada byla odstraněna po 100 dnech. Nicméně i po odstranění závady zůstal kontaminant v půdě. Vaším úkolem je určit jak se kontaminant šíří v půdě, kdy se začne vyskytovat t řece a kdy do řeky dorazí maximální koncentrace.

Určete, kdy dorazí kontaminant do řeky při různých hodnotách disperze.

Postup

Stavba modelu a vytvoření základní tlakové počáteční podmínky	2
Vytvoření tlakové pole počáteční podmínky s únikem ze skládky	9
Vytvoření kontaminované oblasti	10
Modelujte transport kontaminantu směrem k toku	11
Analýza proměnných parametrů transportu	13

Stavba modelu a vytvoření základní tlakové počáteční podmínky

1) New project: Založte nový projekt.

2) Domain Type and Units

Domain Type and Units		×
Type of Geometry 2D - Simple 2D - General	General 2D domain defined by boundary curves.	<u>O</u> K <u>C</u> ancel <u>H</u> elp
○ 3D - ∑imple ○ 3D - Layered ○ 3D - General		
2D-Domain Options 2D - <u>H</u> orizontal Plane XY © 2D - <u>V</u> ertical Plane XZ 2D - <u>A</u> xisymmetrical Vertical Flow		
Units Length: cm V DP: 2 🗢	Model Precision and Resolution Epsilon = 0.00714 Standard (recommended)	
Edit Properties on Geometric Objects Edit domain properties, initial and bou Initial Workspace	undary conditions on geometric objects	
X Y Min: 0.00 0.00 Max: 5000.00 1000.00	Z 0.00] [cm] 500.00] [cm]	
Set View Stretching Factors Automati	cally	<u>N</u> ext <u>P</u> revious

3) Main processes

Main Processes and add-on Modules	×
Simulate	<u>O</u> K
Water Flow	<u>C</u> ancel
Dual-Permeability Model	<u>H</u> elp
Solute Transport	
 Standard Solute Transport Wetland CW2D CWM1 	
 Major Ion Chemistry (Unsatchem) Colloid-Facilitated Solute Transport HP2 (Hydrus + Phreeqc) 	
<u>H</u> eat Transport	
Root Water Uptake Root Growth	
Inverse Solution	
Slope Stability Analysis: Slope Classic	
Required Add-on Modules:	Next Previous

4) Time information

Time Information	n		×
Time Units	Time Discretization		ОК
◯ Seconds	Initial Time [day]:	0	Cancel
◯ Minutes	Final Time [day]:	100	Help
OHours	Initial Time Step [day]:	0.0001	
Days	Minimum Time Step [day]:	1e-005	
⊖Years	Maximum Time Step [day]:	5	
Boundary Conditio	ns		
Time-Variable	Boundary Conditions		A.
Number of Time-	Variable Boundary Records:	0	Next
Number of times	to repeat the same set of BC records	5: 1	Previous

5) Output Infrmation

6) Flow parameters

Water Flow Parameters

Wat	ter Flow Parameters							×
Materia Numbe	l Properties for Water Flow	date Mode	l: van Genuch	ten [1980] - Mua	lem [1976]			OK Cancel
Mat	Name	Qr [-]	Qs [-]	Alpha [1/cm]	n [-]	Ks [cm/day]	I [-]	Help
1	Material 1	0.078	0.43	0.036	1.56	24.96	0.5	
Soil Cata	log Loam	~	Neural Netw	ork Prediction	Temp	erature Depend	ence	Next Previous

7) Připravte Grid point Spacing

Tools -> Grid and Work Plane

Grid and Work Plane		×
Work Plane		Grid Origin
	×	Point <u>N</u> o: X: 0.00 [cm] Y: 0.00 [cm] Z: 0.00 [cm]
Grid Options	Grid Type	Number of Grid Points
Show Show Shap Show only in the Geometry module	● <u>C</u> artesian ○ <u>P</u> olar	$D_{\text{Dynamically}}$ according to size of modeDirection 1:50Direction 2:(-)50
		Grid Point Spacing Distance w: 100,000 [cm] Distance h: 20.000 [cm] Rotation β: 0.0 ♀ [°] Grid Line Spacing Grid Contrast Number N1: 10
Default	Ĩ	Number N2: 10 <u>OK</u> <u>Cancel</u> <u>H</u> elp

8) Roztáhněte zobrazení ve smeru osy x faktorem 5.

View -> View Stretching...

View Stretching	×
Stretching Factors	Apply
In 1	,
In 1	Adjust Factors
In S	racondiciony
Adjust Grid	No Stretching
OK Cancel	Неір

9) Geometrie

Importujte a připravte geometrii

File -> Import -> Import Points from Text File

Create New Object	\times
Imported points	
Number of imported points:	10
Numbering of points starts	1
Object Type	No.
Points	1
OK Cancel	Help

Soubor s body naleznete na stránkách předmětu

10) Geometrie

Pomocí Line-Polyline spojte body 1,2,3,4

Pomocí Spline spojte body 4, 5, 6, 7, 8, 9, 10, 1

Pomocí Planar Surface via Boundary vytvořte plochu

11) Mesh – Výpočetní síť

FE-Mesh Parameters: Target element size: 50 m

Insert mesh refinement: Finite element size: 20 m

Aplikujte na body s z > 0.

Generate Mesh: Generate FE-Mesh

12) Domain Properties

Hydraulické vlastnosti Loam.

Vložte 5 pozodovaných bodů (Je třeba potřeba editova FE-Mesh nikoli Geo Objects)

13) Initial conditions

Označte celou síť a vytvořte počáteční podmínku tak, aby na spodním okraji byl tlak 400 cm a zbytek domény byl v rovnováze s tlakem v nejnižším bodu.

Set Pressure Head IC

Water Flow Initial Condition	×		
Distribution	Values at selected nodes		
○ Same value for all nodes ○Hydrostatic Equilibrium from the lowest located nodal point	No. of Selected Nodes : 2935 Minimum value : -100		
Hydrostatic Equilibrium from the domain top surface Linear distribution with depth Set to Field Capacity	Maximum value : 400 Other Options Constant Internal Processor		
Slope in ½ - direction 0 [°] Slope in ½ - direction 0 [°]	Constante Internal Pressure Head Sink/Source Time-Variable Internal Pressure Head Sink/Source (values in Var. H <u>4</u>)		
Pressure Head	Time-Variable Internal Flux Sink/Source (values in Var. Fl <u>4</u>)		
Bottom Pressure Head 400 [cm]			
	OK Cancel		

14) Boundary conditions

Levý okraj – Constant head – tlak 400 cm v rovnováze s nejnižším uzlem.

Constant Pressure Head BC	\times
Boundary Condition Value	
Constant Pressure Head Value: 400 [cm]	
Default OK Cancel	

Pravý okraj – Constant head – tlak 190 cm v rovnováze s nejnižším uzlem.

Vodní tok – Constant head – zoomujte na vodní tok, označte uzly s z < 175, nastavte tlak 80 cm v rovnováze s nejnižším uzlem

Výronová plocha – Označte uzly mezi tokem a z souřadnicí 300 cm (nalevo od toku) a nastavte okrajovou podmínku Seepage Face.

15) SPUSŤTE VÝPOČET

Prohlídněte si tlaky, vlhkosti, a vektory rychlosti jako animaci. Vykopírujte tlaky, vlhkosti, a vektory rychlosti v posledním čase výpočtu to Wordu.

Vytvoření tlakové pole počáteční podmínky s únikem ze skládky

Uložte projekt jako [váš název]-2.

1) Importujte initial conditions z projektu předchozího kroku.

Edit -> Initial conditions -> Import..

Otevřete předchozí projekt

Import Initial Conditions	×
Import data from Hydrus-3D project	
C:\Users\JJ\ownCloud\Vyuka\transport\09H2D_plume\pp.h3d3	
Select quantities to import	
Pressure Head	<u>S</u> elect All <u>U</u> nselect All
Select Time Layer	
The Last (Final) Time Layer O Time Layer No.: Time 6 - 1	LOO days 🗸 🗸
Identical FE-Meshes OK Cancel	<u>H</u> elp

2) Boundary conditions

Vytvořte tlakovou okrajovou podmínku h = 0 ne několika uzlech, které reprezentují místo vstupu kontaminant

3) SPUSŤTE VÝPOČET

Prohlídněte si tlaky jako animaci. Vykopírujte tlaky v posledním čase výpočtu to Wordu.

Vytvoření kontaminované oblasti

Uložte projekt jako [váš název]-3.

1) Přidejte modul výpočtu transportní rovnice.

Flow and Transport Properties -> Main Processes and Modules

Main Processes and add-on Modules	×
Simulate	ОК
Water Flow	Cancel
Dual-Permeability Model	Help
Solute Transport	
Standard Solute Transport	
© cw2D CWM1	
 Major Ion Chemistry (Unsatchem) Colloid-Facilitated Solute Transport HP2 (Hydrus + Phreeqc) 	
Heat Transport	
Root Water Uptake Root Growth	
Inverse Solution	
Slope Stability Analysis: Slope Classic	
Slope Cube	
Required Add-on Modules:	Next
	Previous

2) Nastavte parametry transportu

2) Nastavte parametry transportu

Flow and Transport Properties -> Solute transport -> Transport parameters

Diffusion Coefficient = 3 Disp.L = 10 Disp.T = 1

3) Nastavte koncentraci na okraji

Flow and Transport Properties -> Solute transport -> Reaction parameters

cBnd2 = 1

Toto reprezentuje koncentraci 1 mmol/cm3.

4) Nastavte okrajoví podmínky transportu

Boundary conditions -> Solute transport

V místě vstupu kontaminantu nalinkujte koncentraci cBnd2 pomocí Third-type okrajové podmínky.

5) SPUSŤTE VÝPOČET

Prohlídněte si tlaky, vlhkosti, a koncentraci jako animaci. Vykopírujte tlaky, vlhkosti, a koncentrace v posledním čase výpočtu to Wordu. Zapište do Wordu kolik kontaminantu se dostalo do výpočetní doméně na konci výpočtu (Results –> Other Information -> Mass balance information -> ConcVol [VM/L3] v posledním čase).

Modelujte transport kontaminantu směrem k toku

Uložte projekt jako [váš název]-4.

1) Modelujte období 100 – 2100 dnů

Flow and Transport Properties -> Time Information

Initial time: 100 Final time: 2100 Initial Time Step: 0.001 Minimum Time Step: 0.00001 Maximum Time Step: 50

Flow and Transport Properties -> Output Information

Print Times: 20

Update – vytvoří se 20 řádků v tabulce pro zadání času

Default – Tabulka vyplní

2) Initial conditions

Importujte initial conditions z projektu předchozího kroku.

Edit -> Initial conditions -> Import..

Importujte	projekt	xxx-3
------------	---------	-------

Import Initial Conditions	×
Import data from Hydrus-3D project	
C:\Users\JJ\ownCloud\Vyuka\transport\09H2D_plume\pp3.h3d3	
Select quantities to import	
Pressure Head	Select All
Concentration	Unselect All
Select Time Layer	
The Last (Final) Time Layer O Time Layer No.: Time 6 - 1	LOO days 🗸 🗸
Identical FE-Meshes	<u>H</u> elp

3) Boundary conditions

Vytvořte tokovou okrajovou podmínku q = 0.05 cm/day v uzlech na povrchu mimo výronovou plochu a vodní tok.

3) SPUSŤTE VÝPOČET

Prohlídněte si koncentraci jako animaci. Vykopírujte koncentrace v čase 1000 dnů a v posledním čase výpočtu to Wordu.

Zapište do Wordu kolik kontaminantu zůstalo ve výpočetní doméně na konci výpočtu (Results –> Other Information -> Mass balance information -> ConcVol [VM/L3] v posledním čase).

Zkopírujte průběh koncentrací v pozorovaných bodech (Results – other information: Observation Points)

Zkopírujte koncentrační toky přes okraje (Results – other information: Solute Fluxes -> All solute fluxes

Analýza proměnných parametrů transportu

Výpočet dosavadního modelu je nulový scénář SO.

Modelujte scénář S1, kde je koeficient podélně disperze 10 větší než ve scénáři S0.

Prohlídněte si koncentraci jako animaci. Vykopírujte koncentrace v čase 1000 dnů a v posledním čase výpočtu to Wordu.

Zkopírujte průběh koncentrací v pozorovaných bodech (Results – other information: Observation Points)

Zkopírujte koncentrační toky přes okraje (Results – other information: Solute Fluxes -> All solute fluxes

Modelujte scénář S2, kde je koeficient podélně i příčné disperze roven 10 cm2/den (Nereálné).

Prohlídněte si koncentraci jako animaci. Vykopírujte koncentrace v čase 1000 dnů a v posledním čase výpočtu to Wordu.

Zkopírujte průběh koncentrací v pozorovaných bodech (Results – other information: Observation Points)

Zkopírujte koncentrační toky přes okraje (Results – other information: Solute Fluxes -> All solute fluxes

Modelujte scénář S3, kde je koeficient podélně i příčné stejné jako při S0, ale kontaminant se sorbuje na půdu podle lineální adsorpční izotermy.

Nastavte distribuční koeficient K na 0.6 cm3/g

Flow and Transport Properties -> Solute transport -> Reaction parameters

Prohlídněte si koncentraci jako animaci. Vykopírujte koncentrace v čase 1000 dnů a v posledním čase výpočtu to Wordu.

Zkopírujte průběh koncentrací v pozorovaných bodech (Results – other information: Observation Points)

Zkopírujte koncentrační toky přes okraje (Results – other information: Solute Fluxes -> All solute fluxes