## 143SRPP

**Stream Revitalization: Principles & Practices** 

SEMINAR 2 Gradually-Varied Flow HEC-RAS Modeling

Winter 2019 Semester





CTU in Prague - Faculty of Civil Engineering The Department of Landscape Water Conservation

7 October 2019

# Introduction: HEC-RAS Model

### US Army Corps of Engineers: Hydrological Engineering Center – River Analysis System

HEC-RAS developed from the HEC-2 water surface profile program based on one-dimensional steady flow, utilizing the graduallyvaried flow equation.

#### River Analysis System Components:

- 1. Steady Flow Water Surface Profiles
- 2. Unsteady Flow Simulations
- 3. Sediment Transport / Mobile Boundary Computations
- 4. Water Quality Analysis

HEC-RAS has a graphical user interface (GUI) for pre- and post-processing; and several features the HEC-2 model did not have such as flood encroachment analysis optimization, stable channel design, and accounting ice cover resistance.

# Introduction: HEC-RAS Model

#### HEC-RAS Model

Steady Flow Module based on one-dimensional energy equation, gradually-varied flow derivation. Energy losses are evaluated by friction (Manning Equation, S<sub>e</sub>) and contraction/ expansion estimation by loss coefficients (K<sub>L</sub>) multiplied by the change in velocity head.

Model capable of modeling subcritical flow, supercritical flow, and mixed flow regimes. Selection of boundary conditions for different reaches are important, and dependent on flow regime.

Momentum equation is utilized where the water surface profile is rapidly-varied (mixed flow regime calculations), or for any shift from subcritical to supercritical flow, or visa versa.

### HEC-RAS Model 4.1

## Main Window / Menu Bar

| HEC-RAS 4.1.0                             |                        |
|-------------------------------------------|------------------------|
| File Edit Run View Options GIS Tools Help |                        |
|                                           | II radii               |
| Project.                                  |                        |
| Plan:                                     |                        |
| Geometry:                                 |                        |
| Steady Flow:                              |                        |
| Unsteady Flow:                            |                        |
| Description :                             | 🛫 🛄 US Customary Units |

#### File / Edit / Run / View / Options / GIS Tools / Help

Note: User Manual for vers. 4.1, uses illustration figures from vers. 4.0 Most current version is 5.0.3.

### Main Window / Menu Bar

**HEC-RAS** 

Model 4.0

button bar for quick access

| Unstead<br>Edit and<br>unstead                                                                                              | <b>ly Flow Data</b><br>l/or enter<br>y flow data     | : Unsteady Flo<br>Perform an ur<br>simulation                                               | ow Analysis:<br>isteady flow                                                                                                   | XYZ<br>View<br>section                          | Perspective Plot<br>3D multiple cros<br>n plot                                                                                                                                                     | t:<br>ss                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Open Project:<br>Open an existing<br>project<br>Geometric Data<br>Edit and/or enter<br>geometric Data                       | Water Qu<br>Data: Ente<br>and edit wa<br>quality dat | ality Cr<br>er Vie<br>ater sec<br>a<br>Water Quality<br>Analysis                            | oss Sections:<br>ew cross<br>ction plots<br>General Pro<br>Plot: View<br>computed va<br>along the cha                          | ofile<br>riables<br>annel                       | Hydraulic Pr<br>Plots and table<br>hydraulic prop<br>Profile Sum<br>View summ<br>multiple loc:<br>Vie<br>Dat                                                                                       | operfies:<br>es of<br>perfies<br>mary Table:<br>ary output at<br>ations by profile<br>w DSS: View<br>a stored in DSS |
| File Edit Run<br>Project Single<br>Plan: Press/<br>Geometry: Beave<br>Steady Flow: Beave<br>Unsteady Flow:<br>Description : | Ver Method<br>r Cr. + Bridge - P/w<br>r Cr 3 Flove   |                                                                                             | C:\HEC Data\HEC<br>C:\HEC Data\HEC<br>C:\HEC Data\HEC<br>C:\HEC Data\HEC<br>C:\HEC Data\HEC                                    | AS\Stead<br>RAS\Stead<br>RAS\Stead<br>RAS\Stead | y Examples/BEAVCRE<br>y Examples/BEAVCRE<br>y Examples/BEAVCRE<br>y Examples/BEAVCRE                                                                                                               | Sos S<br>K.prj Co<br>K.p01<br>K.g01<br>K.f01<br>JS Customary Units                                                   |
| Save Project:<br>Save an existing<br>project<br>Steady Flow Da<br>Edit and/or enter                                         | Sediment<br>Data:<br>Enter/edit<br>sediment<br>data  | Sediment<br>Analysis:<br>Perform<br>Sediment<br>Transport<br>Analysis<br>Hydraul<br>Perform | Rating Co<br>View com<br>rating cur<br>Profile Plot:<br>View water sur<br>profile plots<br>ic Design Funct<br>hydraulic design | urve:<br>iputed<br>ves<br>tface<br>ions:        | Sum Errs, Warn, Notes:<br>Summary of Errors,<br>Warnings, and Notes<br>Detailed Output Table:<br>View detailed output at cross-<br>sections, bridges, culverts, etc<br>Stage and Flow Hydrographs: |                                                                                                                      |
| steady flow data                                                                                                            | Steady F<br>Perform                                  | computat<br>low Analysis:<br>a steady flow                                                  | tions                                                                                                                          | · ]                                             | Plot stage and flo                                                                                                                                                                                 | ow hydrographs                                                                                                       |

# HEC-RAS Model: Modelling Steps

HEC-RAS Modeling: Five Main Steps for Steady Flow

- 1. Starting a new project
- 2. Entering geometric data
- 3. Entering flow data and boundary conditions
- 4. Performing the hydraulic calculations
- 5. Viewing and printing results

