

Protierozní ochrana

Téma: Představení modelu WaTEM/SEDEM

143YPEO ZS 2023/2024 2 + 3; z, zk

Metody vyhodnocování erozních událostí

- Erozní a transportní modely
 - Umožňují predikovat srážko-odtokové a erozní události na základě vstupních dat
 - Vhodné pro plánování, predikci vývoje apod.
 - Nutnost kalibrace a validace.
- Experimentální sledování
 - Měření reálné srážky (in-situ)
 - Závislost na podmínkách (musí pršet)
 - Získávání kalibračních dat pro modely

Metody vyhodnocování erozních událostí

- Simulátory deště
 - Měříme reálnou srážku, která má předem definované parametry
 - Možnost opakovat nastavené podmínky
 - Lze získat kalibrační data
 - Organizačně náročné

Modely pro výpočet eroze

Fyzikální

- popisují průběh erozních a transportních procesů na základě fyzikálních vztahů
- Podrobnější
- Vyžadují komplexnější vstupní data
- Příklad:

SMODERP

EROSION 3D

Empirické

- na základě experimentálně odvozených vztahů
- vychází z velkého počtu pozorovaných či měřených událostí.
- Příklad:

Univerzální rovnice ztráty půdy (USLE) Revidovaná univerzální rovnice ztráty půdy (RUSLE)

WaTEM/SEDEM

Vychází z USLE, implementovány některé vztahy z RUSLE

WaTEM/SEDEM

- Prostorově distribuovaný empirický model vstupují prostorová data (GIS vrstvy)
- Byl vyvinut na K. U. Leuven v Belgii
- Stanovuje průměrnou ztrátu půdy v modelovaném území pomocí USLE s aplikací novějších postupů pro výpočet L, S a R podle RUSLE
- Je nadstavbou GIS softwaru IDRISI a pracuje proto s formátem dat *.rst.
- Výpočtový model řeší tři základní výpočtové úlohy:
 - Stanovení průměrné roční ztráty půdy v povodí (při zohlednění depozice v rámci povodí)
 - Stanovení průměrného množství transportovaného sedimentu pro každý úsek vodního toku
 - Stanovení průměrného množství sedimentu usazené ve vodních nádržích

Uživatelské rozhraní modelu

[™] S WATEM/SEDEM File Options Calculat □ 🗳 ▾ 🖬 🛃 🔅	e Help		-	Uložení, otevření nového nebo existujícího projektu, obecná nastavení výpočtu
		New Project		
Input 1 Input 2	Extra Options			Vstup – digitální model terénu
	Select your maps DEM DEM-Map :			Vstup – využití území
	Parcel Parcel Map :		<u>*</u>	Vstup – vodní toky
	River Routing River Map :	Clear	<u>\$</u>	
]	
×	ETTAN	MERE DEM	Winds i sports state	

Uživatelské rozhraní modelu

Nenput 1 [Input 2] Extra Options	ew Project	Vstup – C faktor (mapa/hodnoty)
Select your map or choose a constant value C : Crop Factor Map Map Value 0.01	Ptef : Parcel Cropland : Forest : Pasture : C Map 0 75 75	Vstup – K faktor (mapa/hodnoty)
K : Soil Erodibility Factor Map Value 35	Parcel Connectivity To Cropland : 10 2 To Forest/Pasture : 75	Vstup – Vodní nádrže
Tillage Direction	Ponds	
Ro: Soil Roughness C Map C Value	Alluvial Plane	
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Uživatelské rozhraní modelu

put 1 Input 2 Extra Options	New Project		
LS	Nearing Slope length exponent Wischmeier Smith (1978) McCool (1987,1989) (rill=interrill)	Water 3 R-factor 0.087 Transport Capacity Coef Low (kTc) 75 Transport Capacity Coef High (kTc) 250 Transport Capacity Coef Limit (kTc) 0.1	Algoritmus výpočtu LS faktoru Fyzikální vlastnosti
Advanced Settings Tillage Transport Coefficient i Bulk Density :	(ktil): 600 Kg / m, 1350 Kg / mł	Output units Intensity (t/ha) Theight Difference (mm)	
*			- Hodnota R faktoru - Transportní kapacita (dle

Vstupní data

- Digitální model terénu
- Mapa využití území

Kategorie LU	Hodnota		
Les	10000		
ТТР	20000		
Orná půda	1 – 9999		
Vodní toky/plochy	-1		
Neřešená oblast	-2		

Vstupní data

- Faktor ochranného účinku vegetace
- Úseky vodních toků
- Tabulka návaznosti úseků VT

Celkový počet	úseků] [Návaznost úseků
Sout jidri	oor Úpravy Fi id FNODE_	TNODE	brazeni Nápověda length_arc_
347	1	2	100
2	3	4	100
3	5	6	100
4	7	8	100
5	9	10	100
6	11	12	100
7	13	14	100
8	15	354	100
9	18	19	100
10	20	21	100
11	22	24	100
12	25	26	100
13	26	27	100
14	28	29	100
15	30	31	100
16	32	33	100
17	33	34	100
18	35	37	100
19	38	39	100
20	40	25	100

Vstupní data

- Faktor erodovatelnosti půdy
 - Hodnota K faktoru (100x vyšší celočíselná)
- Mapa vodních nádrží
 - Obsahuje "poměr zachycení" tj. procentuální podíl sedimentu, který je ve vodní nádrži zachycen (0 100)
- Erozní účinnost deště a povrchového odtoku
 - Hodnota R faktoru/1000

Výstupy

Rastrové

• NettoWaterErosion – rastrová vrstva eroze (-) a depozice (+)

• Tabulkové (textové)

- Projectriversediment
- Pond Sediment Deposition

Soubor	Úpravy	Formát	Zobrazeni	Nápověda					
ID	Pond	PTEF	inp	ut ton		output	ton	deposition ton	on river
134						2000 CO. 1900 CO.		and a resolution with the resolution of the	
1	81	2	0	2	TRUE				
2	100	3	0	3	TRUE				
3	100	0	0	0	TRUE				
4	100	1	0	1	TRUE				
5	50	5	2	2	TRUE				
6	50	17	8	8	TRUE				
7	100	3	0	3	TRUE				
8	100	0	0	0	TRUE				
9	100	0	0	0	TRUE				
10	50	0	0	0	TRUE				
11	50	1	0	0	TRUE				
12	100	0	0	0	TRUE				
13	100	0	0	0	TRUE				
14	100	0	0	0	TRUE				
15	100	0	0	0	TRUE				
16	100	0	0	0	TRUE				
17	96	196	8 79	1890	TRUE				

Soubor	Úpravy	Formát	Zobrazení N	ápověda		
Riveri	d Next	Riverid	Hills	lope sediment input	Sediment input upstream river	Sediment output river
1	185	18	0	18		
2	102	7	16	23		
3	95	97	0	97		
4	81	0	0	0		
5	203	260	69	329		
6	246	3	0	3		
7	238	29	150	179		
8	326	0	0	0		

Práce s textovacími daty

Data:

https://storm.fsv.cvut.cz/pro-studenty/predmety/bakalarske-studijniprogramy/stavebni-inzenyrstvi-bc/inzenyrstvi-zivotniho-prostredibc/protierozni-ochrana/?lang=cz

- Načtení dat do modelu
- Výpočet
- V prostředí ArcGIS zobrazení výsledků
 - Eroze/depozice
 - Vodní toky transport materiálu

Příprava vstupů – DMT, R faktor, K faktor

Data: Public\Vyuka\2023_YPEO\Cviceni_4\

DMT

- Stáhnout DMR 4G
- CLIP podle řešeného území

R faktor

Vyhledat hodnotu pro řešené území (R_CHMU)

K faktor

<u>Orná půda</u>

- CLIP (BPEJ_20220901)pro řešené území
- JOIN hodnoty K faktoru podle tabulky (HPJ_Kfaktor_Janecek_2013) (nulové hodnoty doplnit ručně)
- POLYGON TO RASTER (Snap raster DMR4G) => K_BPEJ
- RATER CALCULATOR K_BPEJ*100 => K_BPEJ_100
- RECLASS vytvoření masky (MASK orná půda 0, zbytek 1)
- Doplnění ploch mimo ornou půdu (K100_int)
 - CLIP pro řešené území
 - RATER CALCULATOR (K100_int * MASKA =>K100_int_MASK)
 - RASTER CALCULATOR (K_BPEJ_100 + K100_int_MASK) => K_100

Děkuji za pozornost